
http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

Building an SQLite temperature
logger

In this article I'm going to describe how I used a Raspberry Pi to build an SQLite

based temperature logging system with a web UI. Follow this link to see the

completed Raspberry Pi temperature logger with web UI.

You can download the code for this project from Github:

https://github.com/Pyplate/rpi_temp_logger. There's a button to download the project

as a zip file at the bottom of the right hand column.

The temperature logger consists of two parts: a script called monitor.py to measure

the temperature at 15 minute intervals, and a script called webgui.py that displays

temperatures in a web page. Monitor.py is triggered by a cron job. Every 15 minutes,

it reads the temperature from a DS18B20 connected to my Pi's GPIO pins, and

stores the reading in an SQLite database.

The other script, webgui.py, executes when it is requested by the Apache web

server. It queries the database and displays the readings formatted in HTML.

Temperatures are displayed in a javascript chart generated by code from Google

charts.

Set up the SQLite database

The first thing to do is set up a database. Install SQLite using this command:

sudo apt-get install sqlite3

Then at a terminal type this command to enter the SQLite shell:

$ sqlite3 templog.db

In the SQLite shell I entered these commands to create a table called temps:

BEGIN;

CREATE TABLE temps (timestamp DATETIME, temp NUMERIC);

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-an-sqlite-temperature-logger.html
http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-an-sqlite-temperature-logger.html
http://raspberrywebserver.com/cgi-bin/webgui.py
https://github.com/Pyplate/rpi_temp_logger
https://google-developers.appspot.com/chart/interactive/docs/gallery/linechart
https://google-developers.appspot.com/chart/interactive/docs/gallery/linechart

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

COMMIT;

Temps has two fields: a timestamp, which is the date and time when a temperature is

entered, and the other field is used to store the temperature. The BEGIN and

COMMIT commands ensure that the transaction is saved in the database.

Use the .quit command to exit the SQLite shell, and then use these commands to put

the database in /var/www, and set the database's owner to www-data:

$ sudo cp templog.db /var/www/

$ sudo chown www-data:www-data /var/www/templog.db

The Apache daemon has its own user name, www-data. I changed the database

file's owner from pi to www-data so that Apache can read the file.

Writing the monitor script

Monitor.py reads temperatures from a DS18B20 on a breadboard connected to

GPIO, and stores them in an SQLite database. The script starts by loading kernel

modules for reading from 1 wire devices. Next, it searches for a directory in

/sys/bus/w1/devices. The DS18B20 is represented by a directory starting with the

digits '28', so searching for /sys/bus/w1/devices/28* finds the device path. To find the

device file, we just append '/w1_slave' to the device path.

I wrote a function called get_temp to read from the device file:

get temerature

argument devicefile is the path of the sensor to be read,

returns None on error, or the temperature as a float

def get_temp(devicefile):

 try:

 fileobj = open(devicefile,'r')

 lines = fileobj.readlines()

 fileobj.close()

 except:

 return None

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

 # get the status from the end of line 1

 status = lines[0][-4:-1]

 # is the status is ok, get the temperature from line 2

 if status=="YES":

 print status

 tempstr= lines[1][-6:-1]

 tempvalue=float(tempstr)/1000

 print tempvalue

 return tempvalue

 else:

 print "There was an error."

 return None

When read, the DS18B20 returns a two line string. If the device was read

successfully, the end of the first line contains the letters 'YES'. The last five digits on

the second line are the temperature in degrees Celsius. I converted them to a float

and divided by 1000 to display the temperature with a decimal point in the correct

place. If everything goes well, get_temp returns the temp as a float, otherwise it

returns None.

The call to get_temp fails sometimes, most likely due to noise picked up by the

jumper cables. If get_temp returns None, then we just call it again. See this page for

detailed information on reading a DS18B20 temperature sensor on a Raspberry Pi.

Storing readings in the database

Monitor.py contains a function called log_temperature which stores readings in the

database. This function connects to the database and creates a cursor. The cursor

object is used to execute an SQL command to insert the temperature as a number

along with the current date and time. Finally, log_temperature commits the

transaction to the database and closes the connection.

store the temperature in the database

def log_temperature(temp):

 conn=sqlite3.connect(dbname)

 curs=conn.cursor()

http://raspberrywebserver.com/gpio/connecting-a-temperature-sensor-to-gpio.html

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

 curs.execute("INSERT INTO temps values(datetime('now'), (?))", (temp,))

 # commit the changes

 conn.commit()

 conn.close()

See this page for more information on accessing a database in Python.

Installing the monitor script

I saved the script as monitor.py in /usr/lib/cgi-bin/. I used this directory because it's

the standard directory for executable scripts in Apache. Note, you have to configure

Apache to execute .py files.

The following commands give monitor.py executable permissions, and change its

owner to Apache's user name, www-data:

$ sudo chmod +x /usr/lib/cgi-bin/monitor.py

$ sudo chown www-data:www-data /usr/lib/cgi-bin/monitor.py

Now a cron job needs to be set up to trigger monitor.py every 15 minutes. I did this

by editing the user crontab file for www-data. This command opens the crontab file in

the nano editor:

$ sudo crontab -u www-data -e

Crontab can be used with other editors, but nano is the default. I added this line at

the end of www-data's crontab:

*/15 * * * * /usr/lib/cgi-bin/monitor.py

To save the file, I pressed Control O, and just hit return when prompted for the file

name. The updated file will be saved to a temporary file and then automtically

installed in the proper place. Press Control X to exit nano.

http://raspberrywebserver.com/sql-databases/accessing-an-sqlite-database-with-python.html
http://raspberrywebserver.com/cgiscripting/writing-cgi-scripts-in-python.html
http://raspberrywebserver.com/cgiscripting/writing-cgi-scripts-in-python.html

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

In the next post, I'll describe how I built the web UI for the Raspberry Pi temperature

logger.

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-a-web-user-interface-for-the-temperature-monitor.html
http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-a-web-user-interface-for-the-temperature-monitor.html

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

Building a web user interface for
the temperature monitor

In my last post, I wrote about logging temperatures in an SQL database. In this

article, I'm going to build a web based user interface.

You can download the code for this project from Github:

https://github.com/Pyplate/rpi_temp_logger. There's a button to download the project

as a zip file at the bottom of the right hand column.

The UI is generated by a script called webgui.py. When webgui.py executes, it

searches the database and returns a list of records. Webgui.py begins execution in

the main function. The first thing it does is call get_option() to see if any options were

passed to the script, and recover them if available. The first time a user opens the UI

in their browser, no options will be passed to the script. As you'll see a few

paragraphs down, users can select an option in the UI and reload the script. When

this happens, an option is passed to the script, and get_option() returns that option

so that it can be used in the rest of the script.

Next, webgui.py searches the database for records within the time limit imposed by

any options that were passed. Function get_data() handles this:

get data from the database

if an interval is passed,

return a list of records from the database

def get_data(interval):

 conn=sqlite3.connect(dbname)

 curs=conn.cursor()

 if interval == None:

 curs.execute("SELECT * FROM temps")

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-a-web-user-interface-for-the-temperature-monitor.html
http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-a-web-user-interface-for-the-temperature-monitor.html
http://24.media.tumblr.com/d97f91aaa219b34394c68be57f13a65b/tumblr_mtnclo0RO71so209ao1_1280.jpg
http://24.media.tumblr.com/d97f91aaa219b34394c68be57f13a65b/tumblr_mtnclo0RO71so209ao1_1280.jpg
http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/building-an-sqlite-temperature-logger.html
http://raspberrywebserver.com/cgi-bin/webgui.py
https://github.com/Pyplate/rpi_temp_logger

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

 else:

 curs.execute("SELECT * FROM temps WHERE

 timestamp>datetime('now','-%s hours')" % interval)

 rows=curs.fetchall()

 conn.close()

 return rows

It connects to the database and creates a cursor. If no option was passed to the

script, then all records in the database are returned. If a time limit was specified, the

database is queried for records where the timestamp is greater than the current time

minus the interval.

Print the HTTP header

Before anything else happens, the HTTP header is sent to the browser. This is just a

string that tells the browser that we're about to send it some HTML:

Content-type: text/html\n\n

There must be a blank line after the header, so the string is terminated with two new

line characters.

The list of records returned by get_data is then passed to create_table(), a function

that formats the data as a javascript table as follows:

['2013-09-19 10:30:03', 20.062],

['2013-09-19 10:45:02', 20.687],

['2013-09-19 11:00:02', 21.125]

This table will be embedded in a javascript snippet later on. Note that the last line in

the table does not have a comma at the end. This is important because of the format

of the code that the table is embedded in.

Printing the HTML head section

Now we're ready to print the rest of the page. We start with the HTML tag, and then

the head section. The head section of a web page contains meta data, javascript and

CSS styling. In this example, there's no need to use meta data or CSS, so we just

need to print the page title tags and the javascript for the Google chart. The javascript

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

snippet is printed by function print_graph_script(). The table generated earlier is

passed to print_graph_script() so that it can be embedded in the javascript code.

 <script type="text/javascript"

src="https://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load("visualization", "1", {packages:["corechart"]});

 google.setOnLoadCallback(drawChart);

 function drawChart() {

 var data = google.visualization.arrayToDataTable([

 ['Time', 'Temperature'],

['2013-09-19 20:15:02', 21.187],

['2013-09-19 20:30:02', 21.375],

['2013-09-19 20:45:02', 21.625],

['2013-09-19 21:00:02', 21.812],

['2013-09-19 21:15:02', 21.875],

['2013-09-19 21:30:02', 22],

['2013-09-19 21:45:02', 22.187],

['2013-09-19 22:00:02', 22.062],

['2013-09-19 22:15:03', 22.125]

]);

 var options = {

 title: 'Temperature'

 };

 var chart = new google.visualization.LineChart

 (document.getElementById('chart_div'));

 chart.draw(data, options);

 }

 </script>

Printing the page body

Near the top of the UI, there's a drop down list where users can select whether they

view data from the last 6, 12 or 24 hours. The list is an HTML form (see

http://raspberrywebserver.com/cgiscripting/web-forms-with-python.html for more

information). When the submit button is pressed, the script runs again and the

chosen value is passed to the new instance of the script. Function get_option() uses

Python's CGI library to get the value of the option. When the list is displayed again, it

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

needs to be displayed with a default value to indicate which option was selected. This

is done by embedding 'selected="selected"' in the string for the chosen option:

 <form action="/cgi-bin/webgui.py" method="POST">

 Show the temperature logs for

 <select name="timeinterval">

 <option value="6" selected="selected">the last 6 hours</option>

 <option value="12">the last 12 hours</option>

 <option value="24">the last 24 hours</option>

 </select>

 <input type="submit" value="Display">

 </form>

Displaying the temperature chart

The code for the chart appears in the head section, but the chart itself is drawn in the

page body. The javascript code references an HTML div called chart_div. The

function show_graph() prints this line of HTML:

<div id="chart_div" style="width: 900px; height: 500px;"></div>

When the entire page is loaded in a browser, the javascript code executes and draws

the chart in chart_div.

Display statistics

The final function to execute is show_stats. This function connects to the database,

creates a cursor, and runs three queries. The queries search the database for the

minimum, maximum and average temperatures.

 conn=sqlite3.connect(dbname)

 curs=conn.cursor()

 curs.execute("SELECT timestamp,max(temp) FROM temps

 WHERE timestamp>datetime('now','-%s hour')" % option)

 rowmax=curs.fetchone()

 rowstrmax="{0} {1}C".format(str(rowmax[0]),str(rowmax[1]))

 curs.execute("SELECT timestamp,min(temp) FROM temps

 WHERE timestamp>datetime('now','-%s hour')" % option)

 rowmin=curs.fetchone()

 rowstrmin="{0} {1}C".format(str(rowmin[0]),str(rowmin[1]))

http://raspberrywebserver.com/cgiscripting/rpi-temperature-logger/

 curs.execute("SELECT avg(temp) FROM temps

 WHERE timestamp>datetime('now','-%s hour')" % option)

 rowavg=curs.fetchone()

The first two queries use the max() and min() SQL functions to find the minimum and

maximum entries in the database. They return a record containing the timestamp and

a numeric temperature value. The third query in show_stats uses the avg() function

to find the average value in the database. This query just returns a record containing

the average time without a timestamp. All of these queries select records where the

timestamp is greater than some offset from the current time. The data returned from

the three queries is formatted and printed.

Show_stats executes another query to get records from the last hour. These records

are displayed as a table at the bottom of the page.

It's not practical for me to leave the temperature logger set up indefinitely (I need to

use my Pi for other things), so I've modified the SQL queries in the scripts that are

used to display the temperature logger on this site. I unplugged the breadboard at

around 21:30, so I replaced 'now' with the timestamp '2013-09-19 21:15:02'. Instead

of selecting records that are greater than 'now minus an interval', I modified

webgui.py to select records where the timestamp is greater than '2013-09-19

21:15:02' minus an interval AND less than '2013-09-19 21:15:02'.

In webgui.py, there are several lines that contain hardcoded dates so that you can

use the script with the sample database provided. There is an equivalent version of

each of these lines that uses 'now' instead of a hardcoded timestamp. If you want to

view data you've collected yourself, you should uncomment the lines that use 'now',

and comment out the lines that have a hardcoded date. See webgui.py, lines 45,

117, 122, 127 and 148.

See also:

 http://docs.python.org/2/library/sqlite3.html

 http://sqlite.org/lang_aggfunc.html

 http://www.sqlite.org/lang_datefunc.html

 http://www.tutorialspoint.com/sqlite/sqlite_useful_functions.htm

http://docs.python.org/2/library/sqlite3.html
http://sqlite.org/lang_aggfunc.html
http://www.sqlite.org/lang_datefunc.html
http://www.tutorialspoint.com/sqlite/sqlite_useful_functions.htm

