SKILL LEVEL : BEGINNER

1-Wire sensors

In previous tutorials we've outlined the
integration of simple sensors and switches with
the Raspberry Pi. These components have had a
simple on/off or high/low output, which is sensed
by the Raspberry Pi. Our PIR movement sensor
tutorial in Issue 21, for example, simply says
“Yes, I've detected movement”.

So, what happens when we connect a more
advanced sensor and want to read more
complex data? In this tutorial we will connect a 1-
Wire digital thermometer sensor and programme
our Raspberry Pi to read the output of the
temperature it senses!

In 1-Wire sensors all data is sent down one wire,
which makes it great for microcontrollers and
computers, such as the Raspberry Pi, as it only
requires one GPIO pin for sensing. In addition to
this, most 1-Wire sensors will come with a unique
serial code (more on this later) which means you
can connect multiple units without them
interfering with each other.

The sensor we’re going to use in this tutorial is
the Maxim DS18B20+ Programmable Resolution

PHYSICAL
COMPUTING

GPIO Sensing: Using 1-Wire
temperature sensors - Part 2

———

PHYSI
Brought to you by

—

CAL COMPUTING
ModMyPi

B —

Jacob Marsh

ModMyPi

1-Wire Digital Thermometer.
The DS18B20+ has a
similar layout to transistors,
called the TO-92 package,
with three pins: GND, Data
(DQ) and 3.3V power line
(Vpp)- You also need some
jumper wires, a breadboard
and a 4.7kQ (or 10kQ)
resistor.

(BOTTOM VIEW]

GND [
DQI

The resistor in this setup is used as a 'pull-up' for
the data-line, and should be connected between
the DQ and V, line. It ensures that the 1-Wire
data line is at a defined logic level and limits
interference from electrical noise if our pin was
left floating. We are also going to use GPIO 4
[Pin 7] as the driver pin for sensing the
thermometer output. This is the dedicated pin for
1-Wire GPIO sensing.

Hooking it up

1. Connect GPIO GND [Pin 6] on the Raspberry
Pi to the negative rail on the breadboard.
2. Connect GPIO 3.3V [Pin 1] on the Raspberry
Pi to the positive rail on the breadboard.
3. Plug the DS18B20+ into your breadboard,

6)

ensuring that all three pins are in different rows.
Familiarise yourself with the pin layout, as it is
quite easy to hook it up backwards!

4. Connect DS18B20+ GND [Pin 1] to the
negative rail of the breadboard.

5. Connect DS18B20+ V, [Pin 3] to the positive
rail of the breadboard.

6. Place your 4.7kQ) resistor between DS18B20+
DQ [Pin 2] and a free row on your breadboard.

7. Connect that free end of the 4.7kQ resistor to
the positive rail of the breadboard.

8. Finally, connect DS18B20+ DQ [Pin 2] to
GPIO 4 [Pin 7] with a jumper wire.

L
¥

That's it! We are now
programming!

ready for some

Programming

With a little set up, the DS18B20+ can be read

directly from the command line without the need
for any Python programming. However, this
requires us to input a command every time we
want to know the temperature reading. In order
to introduce some concepts for 1-Wire
interfacing, we will access it via the command
line first and then we will write a Python program
which will read the temperature automatically at
set time intervals.

The Raspberry Pi comes equipped with a range
of drivers for interfacing. However, it's not
feasible to load every driver when the system
boots, as it increases the boot time significantly
and uses a considerable amount of system
resources for redundant processes. These
drivers are therefore stored as loadable modules
and the command modprobe is employed to boot
them into the Linux kernel when they’re required.

The following two commands load the 1-Wire
and thermometer drivers on GPIO 4. At the
command line enter:

sudo modprobe wl-gpio
sudo modprobe wl-therm

We then need to change directory to our 1-Wire
device folder and list the devices in order to
ensure that our thermometer has loaded
correctly. Enter:

cd /sys/bus/wl/devices
1s

In the device list, your sensor should be listed as
a series of numbers and letters. In my case, the
device is registered as 28-000005e2fdc3. You
then need to access the sensor with the cd
command, replacing the serial number with that
from your own sensor. Enter:

cd 28-000005e2fdc3

The sensor periodically writes to the wl_slave
file. We can use the cat command to read it:

cat wl_slave

This yields the following two lines of text, with the
output t showing the temperature in milli-
degrees Celsius. Divide this number by 1000 to
get the temperature in degrees, e.g. the
temperature reading we’ve received is 23.125
degrees Celsius.

72 01 4b 46 7f ff @e 1@ 57 : crc=57 YES
72 Q1 4b 46 7f ff Qe 10 57 t=23125

In terms of reading from the sensor, this is all
that’s required from the command line. Try
holding onto the thermometer for a few seconds
and then take another reading. Spot the
increase? With these commands in mind, we can
now write a Python program to output our
temperature data automatically.

Python program

Our first step is to import the required modules.
The os module allows us to enable our 1-Wire
drivers and interface with the sensor. The time
module allows the Raspberry Pi to define time,
and enables the use of time periods in our code.

import os
import time

We then need to load our drivers:

os.system('modprobe wl-gpio')
os.system('modprobe wl-therm")

The next step is to define the sensor’s output file
(the wl_slave file) as defined above. Remember
to utilise your own temperature sensor’s serial
code!

temp_sensor = '/sys/bus/wl/devices/28-000005e2
fdc3/wl_slave'

We then need to define a variable for our raw
temperature value, temp_raw; the two lines
output by the sensor, as demonstrated by the

command line example. We could simply print
this statement now, however we are going to
process it into something more usable. To do this
we open, read, record and then close the
temp_sensor file. We use the return function
here, in order to recall this data at a later stage in
our code.

def temp_raw():
f = open(temp_sensor, 'r')
lines = f.readlines()
f.close()
return lines

First, we check our variable from the previous
function for any errors. If you study our original
output, as shown in the command line example,
we get two lines of output code. The first line was
"72 01 4b 46 7f ff 0e 10 57 : crc=57 YES". We
strip this line, except for the last three characters,
and check for the “YES” signal, which indicates
a successful temperature reading from the
sensor. In Python, not-equal is defined as “I=",
so here we are saying that while the reading
does not equal "YES", sleep for 0.2s and repeat.

def read_temp():
lines = temp_raw()
while 1lines[@].strip()[-3:] '= "YES':
time.sleep(0.2)
lines = temp_raw()

Once a YES signal has been received, we
proceed to our second line of output code. In our
example this was "72 01 4b 46 7f ff 0Oe 10 57
t=23125". We find our temperature output “t=",
check it for errors and strip the output of the “t="
phrase to leave just the temperature data. Finally
we run two calculations to give us the
temperature in Celsius and Fahrenheit.

temp_output = lines[1].find('t=")
if temp_output !'= -1:
temp_string = lines[1].strip()[temp_output
+2:]
temp_c = float(temp_string) / 1000.0
temp_f = temp_c * 9.0 / 5.0 + 32.0
return temp_c, temp_f

Finally, we loop our process and tell it to output
our temperature data every 1 second.

while True:
print(read_temp())
time.sleep(l)

That’s our code! A screenshot of the complete
program is shown below. Save your program and
run it to display the temperature output, as
shown on the right.

Multiple sensors

DS18B20+ sensors can be connected in parallel
and accessed using their unique serial number.
Our Python example can be edited to access and
read from multiple sensors!

sudo python temp_2.py

As always, the DS18B20+ sensor and all
components are available separately or as part
of our workshop kit from the ModMyPi website
http://www.modmypi.com.

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this
tutorial are available for worldwide shipping from
the ModMyPi webshop at www.modmypi.com

