




28

cat w1_slave

This yields the fol lowing two lines of text, with the

output t showing the temperature in mil l i -

degrees Celsius. Divide this number by 1 000 to

get the temperature in degrees, e.g. the

temperature reading we’ve received is 23.1 25

degrees Celsius.

72 01 4b 46 7f ff 0e 10 57 : crc=57 YES

72 01 4b 46 7f ff 0e 10 57 t=23125

In terms of reading from the sensor, this is al l

that’s required from the command line. Try

holding onto the thermometer for a few seconds

and then take another reading. Spot the

increase? With these commands in mind, we can

now write a Python program to output our

temperature data automatical ly.

Python program

Our first step is to import the required modules.

The os module al lows us to enable our 1 -Wire

drivers and interface with the sensor. The time

module al lows the Raspberry Pi to define time,

and enables the use of time periods in our code.

import os

import time

We then need to load our drivers:

os. system(' modprobe w1-gpio' )

os. system(' modprobe w1-therm' )

The next step is to define the sensor’s output fi le

(the w1_slave fi le) as defined above. Remember

to uti l ise your own temperature sensor’s serial

code!

temp_sensor = ' /sys/bus/w1/devices/28-000005e2

fdc3/w1_slave'

We then need to define a variable for our raw

temperature value, temp_raw; the two lines

output by the sensor, as demonstrated by the

command line example. We could simply print

this statement now, however we are going to

process it into something more usable. To do this

we open, read, record and then close the

temp_sensor fi le. We use the return function

here, in order to recal l this data at a later stage in

our code.

def temp_raw():

f = open(temp_sensor, ' r' )

lines = f. readlines()

f. close()

return lines

First, we check our variable from the previous

function for any errors. I f you study our original

output, as shown in the command line example,

we get two lines of output code. The first l ine was

"72 01 4b 46 7f ff 0e 1 0 57 : crc=57 YES". We

strip this l ine, except for the last three characters,

and check for the “YES” signal, which indicates

a successful temperature reading from the

sensor. In Python, not-equal is defined as “!=”,

so here we are saying that whi le the reading

does not equal "YES", sleep for 0.2s and repeat.

def read_temp():

lines = temp_raw()

while lines[0] . strip()[-3: ] ! = ' YES' :

time. sleep(0. 2)

lines = temp_raw()

Once a YES signal has been received, we

proceed to our second line of output code. In our

example this was "72 01 4b 46 7f ff 0e 1 0 57

t=231 25". We find our temperature output “t=”,

check it for errors and strip the output of the “t=”

phrase to leave just the temperature data. Final ly

we run two calculations to give us the

temperature in Celsius and Fahrenheit.

temp_output = lines[1] . find(' t=' )

if temp_output ! = -1:

temp_string = lines[1] . strip()[temp_output

+2: ]

temp_c = float(temp_string) / 1000. 0

temp_f = temp_c * 9. 0 / 5. 0 + 32. 0

return temp_c, temp_f




