
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 1 (11)

Creating a Raspberry

Pi LAMP server
1. Introduction

2. Install Apache and PHP

3. Set permissions on the web directory

4. Managing Apache2 modules

5. Giving Apache access to the file system

6. Create a Virtual Host

7. Enabling SSL

8. Install the APC support package for PHP

9. Install MySQL

10. Install phpMyAdmin

11. Documentation

Introduction

This tutorial expects that you already have a Raspberry Pi setup and ready to install your Linux

Apache MySQL PHP (LAMP) environment. The article creating a Raspberry Pi web server details

how to:

 install Raspbian Linux

 familiarise yourself with the command line and text editor

 performance tuned the OS

 setup networking

 enabled SSH and SFTP

 have made your OS headless

 have made your server secure

 have gone through a server clean up exercise

 changed your hostname

 can access you server via the Internet

 have setup a domain name

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#intro
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#apachephp
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#permissions
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#modules
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#apacheaccess
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#virtualhost
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#ssl
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#apc
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#mysql
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#phpmyadmin
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/#docs
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#linux
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#cmdline
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#tuning
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#networking
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#sshsftp
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#headless
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#security
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#cleanup
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#hostname
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#internet
http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-web-server/#dns

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 2 (11)

Install Apache and PHP

The Apache webserver is available to download from the Debian repositories. This can be done

through the apt tools.

First, have you refreshed the software repositories? If not run sudo apt-get update to make

sure that it knows about any new packages/versions available.

The following commands will install Apache and PHP version 5:

sudo apt-get install apache2 php5 libapache2-mod-php5

Next, create an extra file in the /etc/apache2/conf.d directory as follows:

sudo nano /etc/apache2/conf.d/servername.conf

Type your ServerName into the file under the ServerName directive:

ServerName tariqkhan.rpi

As Apache2 loads data from the files in conf.d into its configuration, these changes will remove

the error concerning Apache2 not finding your server name. It is preferable to use this method of

adding to the Apache2 configuration as editing the main configuration file may introduce

unintentional errors.

Reload the server using: sudo service apache2 restart

If you want to take a look at your PHP configuration, create the following file:

sudo nano /var/www/phpinfo.php

Inside that file put the following code: <?php phpinfo(); ?>

Save it and point your browser to http://domain.or.ip/phpinfo.php and this should detail configuration

and settings.

Configuration files used by Apache:

 Apache main configuration file: /etc/apache2/apache2.conf

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 3 (11)

 Virtual domains: /etc/apache2/sites-enabled/domain

 Additional configuration directives: /etc/apache2/conf.d/

 Ports to listen to: /etc/apache2/ports.conf

Set permissions on the web directory

It is useful to change the permissions on the web directory (www) to allow your user to update the

webpages without needing to be the root user.

Change the directory owner and group sudo chown www-data:www-data /var/www

Allow the group to write to the directory sudo chmod 775 /var/www

Add the user to the www-data group sudo usermod -a -G www-data tariq

You should logout and then log back in to pick up group permissions, or you can just start a new

terminal.

Managing Apache2 modules

As an example, we will be enabling mod-rewrite, but the same rules apply for any other module.

Compiled statically inside the Apache2 binary:

core, http_core, prefork/worker/perchild, mod_access, mod_auth,

mod_log_config, mod_logio, mod_env, mod_setenvif, mod_mime,

mod_status, mod_autoindex, mod_negotiation, mod_dir, mod_alias,

mod_so

You can get the list of compiled in modules from the command line: apache2 -l

Apache2 modules installed and ready to be enabled:

actions, asis, auth_anon, auth_dbm, auth_digest, auth_ldap, cache,

cern_meta, cgi, cgid, dav, dav_fs, deflate, disk_cache, expires,

ext_filter, file_cache, headers, imap, include, info, ldap,

mem_cache, mime_magic, proxy, proxy_connect, proxy_ftp, proxy_http,

rewrite, speling, ssl, suexec, unique_id, userdir, usertrack,

vhost_alias

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 4 (11)

All the loading and configuration related entries are found in individual files inside the folder

/etc/apache2/mods-available/. Here, we will find files like module_name.load (and if

needed module_name.conf). Also, all additional installed modules will place their configuration

files in the same place.

Inside the folder /etc/apache2/mods-enabled/ we will find all the enabled modules. Here we

will find symlinks to the files from mods_available for all the enabled modules.

a2enmod enables an Apache2 module (this does nothing else but creates the proper links to the

module .load and .conf files). For example to enable the rewrite module:

sudo a2enmod rewrite

a2dismod disables an Apache2 module (removes the links from mod-enabled for the module). For

example to disable the rewrite module:

sudo a2dismod rewrite

Giving Apache access to the file system

It is prudent to limit Apache's view of the file system to only those directories necessary. Start by

denying access to everything then grant access to the necessary directories:

sudo nano /etc/apache2/sites-available/default

Deny access completely to file system root (/) then grant permissions as the default:

<Directory />

Options None

AllowOverride None

</Directory>

We then need to edit the default Apache2 configuration to set the default location of system web

pages, allow access and AllowOverrides from .htaccess files or any rewrite rules created by websites.

Find the following:

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 5 (11)

DocumentRoot /var/www

<Directory /var/www/>

Options -Indexes FollowSymLinks MultiViews

AllowOverride all

Order allow,deny

allow from all

</Directory>

Create a Virtual Host

Navigate to the location where Apache2 will read configuration files containing our setup for a virtual

host: cd /etc/apache2/sites-available

You can place all virtual host configuration files here. But each file will not be enabled unless a

symbolic link to the file is created in the parallel directory sites-enabled. There is a tool for

doing this, which we will use once we have created a virtual host configuration file: sudo nano

oursites.conf

Note that the oursites is plural, as we may have more than one virtual site! Then edit the file so

that it contains the following text:

oursites.conf

First, the listening port (if not specified elsewhere):

Listen 80

Next, the IP address and port for the virtual host. This assumes

that you have only one IP address and port for this server.

Be sure to substitute your own parameters throughout this file!

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 6 (11)

NameVirtualHost 10.0.0.97:80

Next, add the default server, because creating a virtual host

causes Apache2 to ignore the default server configured in the

/etc/apache2/sites-available/default file.

If you do not do this, any html files in /var/www will be ignored!

<VirtualHost 10.0.0.97:80>

DocumentRoot /var/www

DirectoryIndex index.htm index.html index.php

</VirtualHost>

Next your first virtual server details:

<VirtualHost 10.0.0.97:80>

ServerAdmin email@youraddress.com

ServerName oursite1

ServerAlias samesite1

DocumentRoot /var/www/oursite1

DirectoryIndex index.htm index.html index.php

ErrorLog /var/www/oursite1/log/error.log

CustomLog /var/www/oursite1/log/access.log

</VirtualHost>

This will allow you to access your "oursite1" website by that

name.

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 7 (11)

There are one or two other configuration adjustments to make before this will work. First, create a

directory for the Apache2 log files, as given in the oursites.conf file: mkdir

/var/www/oursite1/log

Then we must make a link to our new virtual host file in sites-enabled: sudo a2ensite

oursites.conf

This program creates the link for you. Its sister program a2dissite will remove the link if you wish

to take your virtual host site offline.

Finally, it is necessary to enter your new virtual host site name into your Raspberry Pi /etc/hosts

file, your PC workstation C:\Windows\System32\drivers\etc\hosts file, or into your

domain name server (DNS) if you have one.

Finally, restart Apache daemon: /etc/init.d/apache2 restart or service apache2

restart.

Enabling SSL

To enable SSL:

sudo a2enmod ssl

sudo a2ensite default-ssl

If you want to use self-signed certificates, you should install the ssl-cert package detailed in

'Creating self-signed certificates' below. Otherwise, just adjust the SSLCertificateFile and

SSLCertificateKeyFile directives in /etc/apache2/sites-available/default-ssl to

point to your SSL certificate. Then restart apache: sudo /etc/init.d/apache2 restart.

The SSL key file should only be readable by root, the certificate file may be globally readable.

These files are read by the Apache parent process which runs as root. Therefore, it is not necessary

to make the files readable by the www-data user.

Creating self-signed certificates

If you install the ssl-cert package, a self-signed certificate will be automatically created using the

hostname currently configured on your computer. You can recreate that certificate (e.g. after you have

changed /etc/hosts or DNS to give the correct hostname) as user root with:

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 8 (11)

make-ssl-cert generate-default-snakeoil --force-overwrite

To create more certificates with different host names, you can use

make-ssl-cert /usr/share/ssl-cert/ssleay.cnf /path/to/cert-file.crt

This will ask you for the hostname and place both SSL key and certificate in the file

/path/to/cert-file.crt. Use this file with the SSLCertificateFile directive in the Apache

config (you don't need the SSLCertificateKeyFile in this case as it also contains the key). The file

/path/to/cert-file.crt should only be readable by root. A good directory to use for the

additional certificates or keys is /etc/ssl/private.

SSL workaround for MSIE

The SSL workaround for MS Internet Explorer needs to be added to your SSL VirtualHost section (it

was previously in ssl.conf but caused keepalive to be disabled even for non-SSL connections):

BrowserMatch "MSIE [2-6]" \

nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

The default SSL virtual host in /etc/apache2/sites-available/default-ssl already

contains this workaround.

Install the APC support package for PHP

APC is an alternative caching support system for PHP, which enables PHP intermediate code to be

cached. This can improve the performance of Apache2 and other programs which may execute PHP

code. Execute the following command to obtain and install the APC support system for PHP:

sudo apt-get install php-apc

sudo apt-get install php-pear php5-dev apache2-prefork-dev build-

essential make && pecl install apc

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 9 (11)

Then edit the php.ini configuration file: sudo nano /etc/php5/apache2/php.ini and

add the following text to the file, in the Dynamic Extension section, some way down the file:

extension=apc.so

Then to take account of system and configuration changes, stop and start the Apache2 web server:

service apache2 start

service apache2 stop

...or service apache2 restart.

Install MySQL

MySQL is the most popular database server, whilst there are other alternatives some of which may

require less resources, most third party software for Linux is designed to use MySQL. Remember

running MySQL server, to a fair extent, requires at least 256mb of RAM in your server. If you don't

need a database then you can skip this.

The MySQL server and MySQL client is also available through the Debian repositories and installed

as:

sudo apt-get install mysql-server mysql-client php5-mysql

During the install there is a prompt request for a password. The password is for the MySQL root user.

The configuration file of MySQL is located at: /etc/mysql/my.cnf

Creating MySQL users and Changing Root Password

By default MySQL creates a user as root and runs with no password. If you want to change the root

password:

mysql -u root

mysql> USE mysql;

mysql> UPDATE user SET Password=PASSWORD('new-password') WHERE

user='root';

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 10 (11)

mysql> FLUSH PRIVILEGES;

You must never use root password, so you will want to create a user so that you can connect to

MySQL database for a PHP script. Alternatively, you can add users to MySQL database by using a

control panel like phpMyAdmin to easily create or assign database permission to users.

Install phpMyAdmin

phpMyAdmin is a nice web based database management and administration software and easy to

install and configure under Apache. All you need to do is enter: sudo apt-get install

phpmyadmin

The package will begin installing. You will be asked which web server is installed, choose apache2.

Next we'll need to configure phpMyAdmin's database. When prompted, choose Yes. Next you'll be

asked for an administrative password, this is the root password that was set during the MySQL

installation. You'll be asked to set a password for MySQL. I've used the same password as the MySQL

root password, but it is up to you what you set here.

The phpMyAdmin configuration file is located at: /etc/phpmyadmin

Configure Apache to work with phpMyAdmin

Next we need to change the Apache configuration to allow us to use

http://your.raspberrypi.domain/phpmyadmin to access it. To do this, enter the following command to

alter the configuration:

sudo nano /etc/apache2/apache2.conf

Navigate to the bottom of the file (keep pressing CTRL and V simultanously to jump pages until you're

at the bottom of the file) and add the following new line to the file: Include

/etc/phpmyadmin/apache.conf

Now restart Apache: /etc/init.d/apache2 restart

Point your browser to: http://your.raspberrypi.domain/phpmyadmin

That's it! MySQL and phpMyAdmin are ready. Log in with your MySQL root password and create

users to connect to database from your php script.

http://www.tariqkhan.co.uk/articles/creating-a-raspberry-pi-lamp-server/ Page 11 (11)

Documentation

The full Apache 2 documentation can be found on the web at http://httpd.apache.org/docs/2.2/

Some hints about securing Apache 2 on Debian are available at

http://wiki.debian.org/Apache/Hardening

Examples of Virtual host configurations available at

http://httpd.apache.org/docs/current/vhosts/examples.html

http://httpd.apache.org/docs/2.2/
http://wiki.debian.org/Apache/Hardening
http://httpd.apache.org/docs/current/vhosts/examples.html

