
Non-Programmer's Tutorial for Python 3/Print version 1

Non-Programmer's Tutorial for Python 3/Print
version

1. Front matter
All example Python source code in this tutorial is granted to the public domain. Therefore you may modify it and
relicense it under any license you please. Since you are expected to learn programming, the Creative Commons
Attribution-ShareAlike license would require you to keep all programs that are derived from the source code in this
tutorial under that license. Since the Python source code is granted to the public domain, that requirement is waived.
This tutorial is more or less a conversion of Non-Programmer's Tutorial for Python 2.6. Older versions and some
versions in Korean, Spanish, Italian and Greek are available from http:/ / jjc. freeshell. org/ easytut/ [1]

The Non-Programmers' Tutorial For Python 3 is a tutorial designed to be an introduction to the Python
programming language. This guide is for someone with no programming experience.
If you have programmed in other languages I recommend using Python Tutorial for Programmers [2] written by
Guido van Rossum.
If you have any questions or comments please use the discussion pages or see Authors page for author contact
information. I welcome questions and comments about this tutorial. I will try to answer any questions you have as
best I can.
Thanks go to James A. Brown for writing most of the Windows install info. Thanks also to Elizabeth Cogliati for
complaining enough :) about the original tutorial (that is almost unusable for a non-programmer), for proofreading,
and for many ideas and comments on it. Thanks to Joe Oppegaard for writing almost all the exercises. Thanks to
everyone I have missed.

http://en.wikibooks.org/w/index.php?title=File%3APython3-powered_hello-world.svg
http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_2.6
http://jjc.freeshell.org/easytut/
http://jjc.freeshell.org/easytut/
http://docs.python.org/dev/py3k/tutorial/index.html
http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_3/Authors

Non-Programmer's Tutorial for Python 3/Print version 2

Other resources
• Python Home Page [3]

• Python Documentation [4]

• A Byte of Python by Swaroop C H [5]

• Porting to Python 3: An in-depth guide [6]

2. Intro

First things first
So, you've never programmed before. As we go through this tutorial, I will attempt to teach you how to program.
There really is only one way to learn to program. You must read code and write code (as computer programs are
often called). I'm going to show you lots of code. You should type in code that I show you to see what happens. Play
around with it and make changes. The worst that can happen is that it won't work. When I type in code it will be
formatted like this:

##Python is easy to learn

print("Hello, World!")

That's so it is easy to distinguish from the other text. If you're reading this on the web, you'll notice the code is in
color -- that's just to make it stand out, and to make the different parts of the code stand out from each other. The
code you enter will probably not be colored, or the colors may be different, but it won't affect the code as long as you
enter it the same way as it's printed here.
If the computer prints something out it will be formatted like this:

Hello, World!

(Note that printed text goes to your screen, and does not involve paper. Before computers had screens, the output of
computer programs would be printed on paper.)
Note that this is a Python 3 tutorial, which means that most of the examples will not work in Python 2.7 and before.
As well, some of the extra libraries (third-party libraries) have not yet been converted. You may want to consider
learning from the Non-Programmer's Tutorial for Python 2.6. However, the differences between versions are not
particularly large, so if you learn one, you should be able to read programs written for the other without much
difficulty.
There will often be a mixture of the text you type (which is shown in bold) and the text the program prints to the
screen, which would look like this:

Halt!

Who Goes there? Josh

You may pass, Josh

(Some of the tutorial has not been converted to this format. Since this is a wiki, you can convert it when you find it.)
I will also introduce you to the terminology of programming - for example, that programming is often referred to as
coding or hacking. This will not only help you understand what programmers are talking about, but also help the
learning process.
Now, on to more important things. In order to program in Python you need the Python 3 software. If you don't
already have the Python software go to http:/ / www. python. org/ download/ and get the proper version for your
platform. Download it, read the instructions and get it installed.

http://www.python.org
http://www.python.org/doc/
http://www.swaroopch.com/notes/Python
http://python3porting.com/index.html
http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_2.6
http://www.python.org/download/

Non-Programmer's Tutorial for Python 3/Print version 3

Installing Python
For Python programming you need a working Python installation and a text editor. Python comes with its own editor
IDLE, which is quite nice and totally sufficient for the beginning. As you get more into programming, you will
probably switch to some other editor like emacs, vi or another.
The Python download page is: http:/ / www. python. org/ download [7]. The most recent version is Python 3.4.1 (as
at 19th May 2014); Python 2.7 and older versions will not work with this tutorial. There are various different
installation files for different computer platforms available on the download site. Here are some specific instructions
for the most common operating systems:

Linux, BSD, and Unix users

You are probably lucky and Python is already installed on your machine. To test it type python3 on a command
line. If you see something like that in the following section, you are set.
If you have to install Python, first try to use the operating system's package manager or go to the repository where
your packages are available and get Python 3. Python 3.0 was released in December 2008; all the distributions
should have Python 3 available, so you may not need to compile Python 3 from scratch after downloading the source
code. Ubuntu and Fedora do have Python 3 binary packages available, but they are not yet the default, so they need
to be installed specially.
Roughly, here are the steps to compile Python in UNIX (If these totally don't make sense, you may want to read
another introduction to UNIX, such as Introduction to Linux [8]):
• Download the .tgz file (use your Web browser to get the gzipped tar file from https:/ / www. python. org/

downloads/ release/ python-341)
•• Uncompress the tar file (put in the correct path to where you downloaded it):

$ tar -xvzf ~/Download/Python-3.4.1.tgz

... list of files as they are uncompressed

•• Change to the directory and tell the computer to compile and install the program

$ cd Python-3.4/

$./configure --prefix=$HOME/python3_install

 ... lots of output. Watch for error messages here ...

$ make

 ... even more output. Hopefully no error messages ...

$ make install

•• Add python 3 to your path. You can test it first by specifying the full path. You should add
$HOME/python3_install/bin to your PATH bash variable.

$ ~/python3_install/bin/python3

Python 3.4.1 (... size and date information ...)

[GCC 4.5.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

The above commands will install Python 3 to your home directory, which is probably what you want, but if you skip
the --prefix, it will install it to /usr/local. If you want to use the IDLE graphical code editor, you need to
make sure that the tk and tcl libraries, together with their development files, are installed on the system. You
will get a warning during the make phase if these are not available.

http://www.python.org/download
http://www.python.org/download
http://tldp.org/LDP/intro-linux/html/index.html
https://www.python.org/downloads/release/python-341)
https://www.python.org/downloads/release/python-341)

Non-Programmer's Tutorial for Python 3/Print version 4

Mac users

Starting from Mac OS X (Tiger), Python ships by default with the operating system, but you will need to update to
Python 3 until OS X starts including Python 3 (check the version by starting python3 in a command line
terminal). Also IDLE (the Python editor) might be missing in the standard installation. If you want to (re-)install
Python, get the MacOS installer from the Python download site [9].

Windows users

Download the appropriate Windows installer (the x86 MSI installer [10], if you do not have a 64-bit AMD or Intel
chip). Start the installer by double-clicking it and follow the prompts.
See https:/ / docs. python. org/ 3/ using/ windows. html#installing-python for more information.

Configuring your PATH environment variable

The PATH environment variable is a list of folders, separated by semicolons, in which Windows will look for a
program whenever you try to execute one by typing its name at a Command Prompt. You can see the current value
of your PATH by typing this command at a Command Prompt:
echo %PATH%

The easiest way to permanently change environment variables is to bring up the built-in environment variable editor
in Windows. How you get to this editor is slightly different on different versions of Windows.
On Windows 8: Press the Windows key and type Control Panel to locate the Windows Control Panel. Once
you've opened the Control Panel, select View by: Large Icons, then click on System. In the window that pops up,
click the Advanced System Settings link, then click the Environment Variables... button.
On Windows 7 or Vista: Click the Start button in the lower-left corner of the screen, move your mouse over
Computer, right-click, and select Properties from the pop-up menu. Click the Advanced System
Settings link, then click the Environment Variables... button.
On Windows XP: Right-click the My Computer icon on your desktop and select Properties. Select the
Advanced tab, then click the Environment Variables... button.
Once you've brought up the environment variable editor, you'll do the same thing regardless of which version of
Windows you're running. Under System Variables in the bottom half of the editor, find a variable called
PATH. If there is is one, select it and click Edit.... Assuming your Python root is C:\Python34, add these two
folders to your path (and make sure you get the semicolons right; there should be a semicolon between each folder in
the list):
C:\Python34 C:\Python34\Scripts

Note: If you want to double-click and start your Python programs from a Windows folder and not have the console
window disappear, you can add the following code to the bottom of each script:

print("Hello World")

#stops console from exiting

end_prog = ""

while end_prog != "q":

 end_prog = input("type q to quit")

https://www.python.org/downloads/release/python-341/
https://www.python.org/ftp/python/3.4.1/python-3.4.1.msi
https://docs.python.org/3/using/windows.html#installing-python

Non-Programmer's Tutorial for Python 3/Print version 5

Interactive Mode
Go into IDLE (also called the Python GUI). You should see a window that has some text like this:

Python 3.0 (r30:67503, Dec 29 2008, 21:31:07)

[GCC 4.3.2 20081105 (Red Hat 4.3.2-7)] on linux2

Type "copyright", "credits" or "license()" for more information.

 **

 Personal firewall software may warn about the connection IDLE

 makes to its subprocess using this computer's internal loopback

 interface. This connection is not visible on any external

 interface and no data is sent to or received from the Internet.

 **

IDLE 3.0

>>>

The >>> is Python's way of telling you that you are in interactive mode. In interactive mode what you type is
immediately run. Try typing 1+1 in. Python will respond with 2. Interactive mode allows you to test out and see
what Python will do. If you ever feel you need to play with new Python statements, go into interactive mode and try
them out.

Creating and Running Programs
Go into IDLE if you are not already. In the menu at the top, select File then New Window. In the new window
that appears, type the following:

print("Hello, World!")

Now save the program: select File from the menu, then Save. Save it as "hello.py" (you can save it in any
folder you want). Now that it is saved it can be run.
Next run the program by going to Run then Run Module (or if you have an older version of IDLE use Edit
then Run script). This will output Hello, World! on the *Python Shell* window.
For a more in-depth introduction to IDLE, a longer tutorial with screenshots can be found at http:/ / hkn. eecs.
berkeley. edu/ ~dyoo/ python/ idle_intro/ index. html [11]

Program file names

It is very useful to stick to some rules regarding the file names of Python programs. Otherwise some things might go
wrong unexpectedly. These don't matter as much for programs, but you can have weird problems if you don't follow
them for module names (modules will be discussed later).
1. Always save the program with the extension .py. Do not put another dot anywhere else in the file name.
2. Only use standard characters for file names: letters, numbers, dash (-) and underscore (_).
3.3. White space (" ") should not be used at all (use underscores instead).
4.4. Do not use anything other than a letter (particularly no numbers!) at the beginning of a file name.
5. Do not use "non-english" characters (such as ä, ö, ü, å or ß) in your file names—or, even better, do not use

them at all when programming.

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Non-Programmer's Tutorial for Python 3/Print version 6

Using Python from the command line
If you don't want to use Python from the command line, you don't have to, just use IDLE. To get into interactive
mode just type python3 without any arguments. To run a program, create it with a text editor (Emacs has a good
Python mode) and then run it with python3 program_name.
Additionally, to use Python within Vim, you may want to visit Python wiki page about VIM [12]

Running Python Programs in *nix

If you are using Unix (such as Linux, Mac OS X, or BSD), if you make the program executable with chmod [13], and
have as the first line:

#!/usr/bin/env python3

you can run the python program with ./hello.py like any other command.

Where to get help
At some point in your Python career you will probably get stuck and have no clue about how to solve the problem
you are supposed to work on. This tutorial only covers the basics of Python programming, but there is a lot of further
information available.

Python documentation

First of all, Python is very well documented. There might even be copies of these documents on your computer,
which came with your Python installation:
• The official Python 3 Tutorial [14] by Guido van Rossum is often a good starting point for general questions.
• For questions about standard modules (you will learn what this is later), the Python 3 Library Reference [15] is the

place to look at.
• If you really want to get to know something about the details of the language, the Python 3 Reference Manual [16]

is comprehensive but quite complex for beginners.

Python user community

There are a lot of other Python users out there, and usually they are nice and willing to help you. This very active
user community is organised mostly through mailing lists and a newsgroup:
• The tutor mailing list [17] is for folks who want to ask questions regarding how to learn computer programming

with the Python language.
• The python-help mailing list [18] is python.org's help desk. You can ask a group of knowledgeable volunteers

questions about all your Python problems.
• The Python newsgroup [news:comp.lang.python comp.lang.python] (Google groups archive [19]) is the place for

general Python discussions, questions and the central meeting point of the community.
• Python wiki has a list of local user groups [20], you can join the group mailing list and ask questions. You can also

participate in the user group meetings.
In order not to reinvent the wheel and discuss the same questions again and again, people will appreciate very much
if you do a web search for a solution to your problem before contacting these lists!

http://wiki.python.org/moin/Vim
http://en.wikipedia.org/wiki/Chmod
http://docs.python.org/3/tutorial/
http://docs.python.org/3/library/
http://docs.python.org/3/reference/
http://mail.python.org/mailman/listinfo/tutor
http://www.python.org/community/lists/#python-help
http://groups.google.com/group/comp.lang.python/
http://wiki.python.org/moin/LocalUserGroups

Non-Programmer's Tutorial for Python 3/Print version 7

3. Hello, World

What you should know
Once you've read and mastered this chapter, you should know how to edit programs in a text editor or IDLE, save
them to the hard disk, and run them once they have been saved.

Printing
Programming tutorials since the beginning of time have started with a little program called "Hello, World!"[21] So
here it is:

print("Hello, World!")

If you are using the command line to run programs then type it in with a text editor, save it as hello.py and run it
with python3.0 hello.py
Otherwise go into IDLE, create a new window, and create the program as in section Creating and Running Programs.
When this program is run here's what it prints:

Hello, World!

Now I'm not going to tell you this every time, but when I show you a program I recommend that you type it in and
run it. I learn better when I type it in and you probably do too.
Now here is a more complicated program:

print("Jack and Jill went up a hill")

print("to fetch a pail of water;")

print("Jack fell down, and broke his crown,")

print("and Jill came tumbling after.")

When you run this program it prints out:

Jack and Jill went up a hill

to fetch a pail of water;

Jack fell down, and broke his crown,

and Jill came tumbling after.

When the computer runs this program it first sees the line:

print("Jack and Jill went up a hill")

so the computer prints:

Jack and Jill went up a hill

Then the computer goes down to the next line and sees:

print("to fetch a pail of water;")

So the computer prints to the screen:

to fetch a pail of water;

The computer keeps looking at each line, follows the command and then goes on to the next line. The computer
keeps running commands until it reaches the end of the program.

http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_3/Intro%23Creating_and_Running_Programs

Non-Programmer's Tutorial for Python 3/Print version 8

Terminology

Now is probably a good time to give you a bit of an explanation of what is happening - and a little bit of
programming terminology.
What we were doing above was using a function called print. The function's name - print - is followed by
parentheses containing zero or more arguments. So in this example

print("Hello, World!")

there is one argument, which is "Hello, World!". Note that this argument is a group of characters enclosed in
double quotes (""). This is commonly referred to as a string of characters, or string, for short. Another example of a
string is "Jack and Jill went up a hill". The combination of a function and parentheses with the
arguments is a function call.
A function and its arguments are one type of statement that python has, so

print("Hello, World!")

is an example of a statement. Basically, you can think of a statement as a single line in a program.
That's probably more than enough terminology for now.

Expressions
Here is another program:

print("2 + 2 is", 2 + 2)

print("3 * 4 is", 3 * 4)

print("100 - 1 is", 100 - 1)

print("(33 + 2) / 5 + 11.5 is", (33 + 2) / 5 + 11.5)

And here is the output when the program is run:

2 + 2 is 4

3 * 4 is 12

100 - 1 is 99

(33 + 2) / 5 + 11.5 is 18.5

As you can see, Python can turn your thousand-dollar computer into a five-dollar calculator.
In this example, the print function is followed by two arguments, with each of the arguments separated by a comma.
So with the first line of the program

print("2 + 2 is", 2 + 2)

The first argument is the string "2 + 2 is" and the second argument is the mathematical expression 2 + 2,
which is commonly referred to as an expression.
What is important to note is that a string is printed as is (without the enclosing double quotes), but an expression is
evaluated, or converted to its actual value.
Python has seven basic operations for numbers:

Non-Programmer's Tutorial for Python 3/Print version 9

Operation Symbol Example

Power (exponentiation) ** 5 ** 2 == 25

Multiplication * 2 * 3 == 6

Division / 14 / 3 == 4.666666666666667

Integer Division // 14 // 3 == 4

Remainder (modulo) % 14 % 3 == 2

Addition + 1 + 2 == 3

Subtraction - 4 - 3 == 1

Notice that there are two ways to do division, one that returns the repeating decimal, and the other that can get the
remainder and the whole number. The order of operations is the same as in math:
• parentheses ()
• exponents **
• multiplication *, division /, integer division //, and remainder %
• addition + and subtraction -
So use parentheses to structure your formulas when needed.

Talking to humans (and other intelligent beings)
Often in programming you are doing something complicated and may not in the future remember what you did.
When this happens the program should probably be commented. A comment is a note to you and other programmers
explaining what is happening. For example:

Not quite PI, but a credible simulation

print(22 / 7)

Which outputs

3.14285714286

Notice that the comment starts with a hash: #. Comments are used to communicate with others who read the program
and your future self to make clear what is complicated.
Note that any text can follow a comment, and that when the program is run, the text after the # through to the end of
that line is ignored. The # does not have to be at the beginning of a new line:

Output PI on the screen

print(22 / 7) # Well, just a good approximation

Examples
Each chapter (eventually) will contain examples of the programming features introduced in the chapter. You should
at least look over them and see if you understand them. If you don't, you may want to type them in and see what
happens. Mess around with them, change them and see what happens.
Denmark.py

print("Something's rotten in the state of Denmark.")

print(" -- Shakespeare")

Output:

Non-Programmer's Tutorial for Python 3/Print version 10

Something's rotten in the state of Denmark.

 -- Shakespeare

School.py

This is not quite true outside of USA

and is based on my dim memories of my younger years

print("Firstish Grade")

print("1 + 1 =", 1 + 1)

print("2 + 4 =", 2 + 4)

print("5 - 2 =", 5 - 2)

print()

print("Thirdish Grade")

print("243 - 23 =", 243 - 23)

print("12 * 4 =", 12 * 4)

print("12 / 3 =", 12 / 3)

print("13 / 3 =", 13 // 3, "R", 13 % 3)

print()

print("Junior High")

print("123.56 - 62.12 =", 123.56 - 62.12)

print("(4 + 3) * 2 =", (4 + 3) * 2)

print("4 + 3 * 2 =", 4 + 3 * 2)

print("3 ** 2 =", 3 ** 2)

Output:

Firstish Grade

1 + 1 = 2

2 + 4 = 6

5 - 2 = 3

Thirdish Grade

243 - 23 = 220

12 * 4 = 48

12 / 3 = 4

13 / 3 = 4 R 1

Junior High

123.56 - 62.12 = 61.44

(4 + 3) * 2 = 14

4 + 3 * 2 = 10

3 ** 2 = 9

Non-Programmer's Tutorial for Python 3/Print version 11

Exercises
1.1. Write a program that prints your full name and your birthday as separate strings.
2.2. Write a program that shows the use of all 7 math functions.

Solution
1. Write a program that prints your full name and your birthday as separate strings.

print("Ada Lovelace", "born on", "November 27, 1852")

print("Albert Einstein", "born on", "14 March 1879")

print(("John Smith"), ("born on"), ("14 March 1879"))

Solution
2. Write a program that shows the use of all 7 math functions.

print("5**5 = ", 5**5)

print("6*7 = ", 6*7)

print("56/8 = ", 56/8)

print("14//6 = ", 14//6)

print("14%6 = ", 14%6)

print("5+6 = ", 5+6)

print("9-0 = ", 9-0)

Footnotes

[1] http:/ / jjc. freeshell. org/ easytut/
[2] http:/ / docs. python. org/ dev/ py3k/ tutorial/ index. html
[3] http:/ / www. python. org
[4] http:/ / www. python. org/ doc/
[5] http:/ / www. swaroopch. com/ notes/ Python
[6] http:/ / python3porting. com/ index. html
[7] http:/ / www. python. org/ download
[8] http:/ / tldp. org/ LDP/ intro-linux/ html/ index. html
[9] https:/ / www. python. org/ downloads/ release/ python-341/
[10] https:/ / www. python. org/ ftp/ python/ 3. 4. 1/ python-3. 4. 1. msi
[11] http:/ / hkn. eecs. berkeley. edu/ ~dyoo/ python/ idle_intro/ index. html
[12] http:/ / wiki. python. org/ moin/ Vim
[13] http:/ / en. wikipedia. org/ wiki/ Chmod
[14] http:/ / docs. python. org/ 3/ tutorial/
[15] http:/ / docs. python. org/ 3/ library/
[16] http:/ / docs. python. org/ 3/ reference/
[17] http:/ / mail. python. org/ mailman/ listinfo/ tutor
[18] http:/ / www. python. org/ community/ lists/ #python-help
[19] http:/ / groups. google. com/ group/ comp. lang. python/
[20] http:/ / wiki. python. org/ moin/ LocalUserGroups

http://jjc.freeshell.org/easytut/
http://docs.python.org/dev/py3k/tutorial/index.html
http://www.python.org
http://www.python.org/doc/
http://www.swaroopch.com/notes/Python
http://python3porting.com/index.html
http://www.python.org/download
http://tldp.org/LDP/intro-linux/html/index.html
https://www.python.org/downloads/release/python-341/
https://www.python.org/ftp/python/3.4.1/python-3.4.1.msi
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
http://wiki.python.org/moin/Vim
http://en.wikipedia.org/wiki/Chmod
http://docs.python.org/3/tutorial/
http://docs.python.org/3/library/
http://docs.python.org/3/reference/
http://mail.python.org/mailman/listinfo/tutor
http://www.python.org/community/lists/#python-help
http://groups.google.com/group/comp.lang.python/
http://wiki.python.org/moin/LocalUserGroups

Non-Programmer's Tutorial for Python 3/Print version 12

[21] Here is a great list of the famous "Hello, world!" program in many programming languages. Just that you know how simple Python can be...

4. Who Goes There?

Input and Variables
Now I feel it is time for a really complicated program. Here it is:

print("Halt!")

user_input = input("Who goes there?")

print("You may pass,", user_input)

When I ran it, here is what my screen showed:

Halt!

Who goes there? Josh

You may pass, Josh

Note: After running the code by pressing F5, the python shell will only give output:

Halt!

Who goes there?

You need to enter your name in the python shell, and then press enter for the rest of the output.

Of course when you run the program your screen will look different because of the input() statement. When you
ran the program you probably noticed (you did run the program, right?) how you had to type in your name and then
press Enter. Then the program printed out some more text and also your name. This is an example of input. The
program reaches a certain point and then waits for the user to input some data that the program can use later.
Of course, getting information from the user would be useless if we didn't have anywhere to put that information and
this is where variables come in. In the previous program user_input is a variable. Variables are like a box that
can store some piece of data. Here is a program to show examples of variables:

a = 123.4

b23 = 'Spam'

first_name = "Bill"

b = 432

c = a + b

print("a + b is",c)

print("first_name is",first_name)

print("Sorted Parts, After Midnight or",b23)

And here is the output:

a + b is 555.4

first_name is Bill

Sorted Parts, After Midnight or Spam

Variables store data. The variables in the above program are a, b23, first_name, b, and c. The two basic types
are strings and numbers. Strings are a sequence of letters, numbers and other characters. In this example b23 and
first_name are variables that are storing strings. Spam, Bill, a + b is, first_name is, and Sorted
Parts, After Midnight or are the strings in this program. The characters are surrounded by " or '. The
other type of variables are numbers. Remember that variables are used to store a value, they do not use quotation

http://en.wikibooks.org/w/index.php?title=Computer_Programming/Hello_world

Non-Programmer's Tutorial for Python 3/Print version 13

marks (" and '). If you want to use an actual value, you must use quotation marks.

value1 == Pim

value2 == "Pim"

Both look the same, but in the first one Python checks if the value stored in the variable value1 is the same as the
value stored in the variable Pim. In the second one, Python checks if the string (the actual letters P,i, and m) are the
same as in value2 (continue this tutorial for more explanation about strings and about the ==).

Assignment
Okay, so we have these boxes called variables and also data that can go into the variable. The computer will see a
line like first_name = "Bill" and it reads it as "Put the string Bill into the box (or variable)
first_name". Later on it sees the statement c = a + b and it reads it as "put the sum of a + b or 123.4
+ 432 which equals 555.4 into c". The right hand side of the statement (a + b) is evaluated and the result is
stored in the variable on the left hand side (c). This is called assignment, and you should not confuse the assignment
equal sign (=) with "equality" in a mathematical sense here (that's what == will be used for later).
Here is another example of variable usage:

a = 1

print(a)

a = a + 1

print(a)

a = a * 2

print(a)

And of course here is the output:

1

2

4

Even if the same variable appears on both sides of the equals sign (e.g., spam = spam), the computer still reads it as,
"First find out the data to store and then find out where the data goes."
One more program before I end this chapter:

number = float(input("Type in a number: "))

integer = int(input("Type in an integer: "))

text = input("Type in a string: ")

print("number =", number)

print("number is a", type(number))

print("number * 2 =", number * 2)

print("integer =", integer)

print("integer is a", type(integer))

print("integer * 2 =", integer * 2)

print("text =", text)

print("text is a", type(text))

print("text * 2 =", text * 2)

The output I got was:

Non-Programmer's Tutorial for Python 3/Print version 14

Type in a number: 12.34

Type in an integer: -3

Type in a string: Hello

number = 12.34

number is a <class 'float'>

number * 2 = 24.68

integer = -3

integer is a <class 'int'>

integer * 2 = -6

text = Hello

text is a <class 'str'>

text * 2 = HelloHello

Notice that number was created with float(input()) while text was created with input(). input()
returns a string while the function float returns a number from a string. int returns an integer, that is a number
with no decimal point. When you want the user to type in a decimal use float(input()), if you want the user to
type in an integer use int(input()), but if you want the user to type in a string use input().
The second half of the program uses the type() function which tells what kind a variable is. Numbers are of type
int or float, which are short for integer and floating point (mostly used for decimal numbers), respectively. Text
strings are of type str, short for string. Integers and floats can be worked on by mathematical functions, strings
cannot. Notice how when python multiplies a number by an integer the expected thing happens. However when a
string is multiplied by an integer the result is that multiple copies of the string are produced (i.e., text * 2 =
HelloHello).
Operations with strings do different things than operations with numbers. As well, some operations only work with
numbers (both integers and floating point numbers) and will give an error if a string is used. Here are some
interactive mode examples to show that some more.

>>> print("This" + " " + "is" + " joined.")

This is joined.

>>> print("Ha, " * 5)

Ha, Ha, Ha, Ha, Ha,

>>> print("Ha, " * 5 + "ha!")

Ha, Ha, Ha, Ha, Ha, ha!

>>> print(3 - 1)

2

>>> print("3" - "1")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

>>>

Here is the list of some string operations:

Non-Programmer's Tutorial for Python 3/Print version 15

Operation Symbol Example

Repetition * "i" * 5 == "iiiii"

Concatenation + "Hello, " + "World!" == "Hello, World!"

Examples
Rate_times.py

This program calculates rate and distance problems

print("Input a rate and a distance")

rate= float(input("rate: "))

distance = float(input("Distance: "))

print("Time:", (distance / rate))

Sample runs:

Input a rate and a distance

Rate: 5

Distance: 10

Time: 2.0

Input a rate and a distance

Rate: 3.52

Distance: 45.6

Time: 12.9545454545

Area.py

This program calculates the perimeter and area of a rectangle

print("Calculate information about a rectangle")

length = float(input("Length: "))

width = float(input("Width: "))

print("Area:", length * width)

print("Perimeter:", 2 * length + 2 * width)

Sample runs:

Calculate information about a rectangle

Length: 4

Width: 3

Area: 12.0

Perimeter: 14.0

Calculate information about a rectangle

Length: 2.53

Width: 5.2

Area: 13.156

Perimeter: 15.46

Temperature.py

Non-Programmer's Tutorial for Python 3/Print version 16

This program converts Fahrenheit to Celsius

fahr_temp = float(input("Fahrenheit temperature: "))

print("Celsius temperature:", (fahr_temp - 32.0) * 5.0 / 9.0)

Sample runs:

Fahrenheit temperature: 32

Celsius temperature: 0.0

Fahrenheit temperature: -40

Celsius temperature: -40.0

Fahrenheit temperature: 212

Celsius temperature: 100.0

Fahrenheit temperature: 98.6

Celsius temperature: 37.0

Exercises
Write a program that gets 2 string variables and 2 number variables from the user, concatenates (joins them together
with no spaces) and displays the strings, then multiplies the two numbers on a new line.

Solution
Write a program that gets 2 string variables and 2 number variables from the user, concatenates (joins them together
with no spaces) and displays the strings, then multiplies the two numbers on a new line.

string1 = input('String 1: ')

string2 = input('String 2: ')

float1 = float(input('Number 1: '))

float2 = float(input('Number 2: '))

print(string1 + string2)

print(float1 * float2)

5. Count to 10

While loops
Presenting our first control structure. Ordinarily the computer starts with the first line and then goes down from
there. Control structures change the order that statements are executed or decide if a certain statement will be run.
Here's the source for a program that uses the while control structure:

a = 0 # FIRST, set the initial value of the variable a to

0(zero).

while a < 10: # While the value of the variable a is less than 10 do the following:

 a = a + 1 # Increase the value of the variable a by 1, as in: a

= a + 1!

 print(a) # Print to screen what the present value of the

variable a is.

 # REPEAT! until the value of the variable a is equal

Non-Programmer's Tutorial for Python 3/Print version 17

to 9!? See note.

 # NOTE:

 # The value of the variable a will increase by 1

 # with each repeat, or loop of the 'while statement

BLOCK'.

 # e.g. a = 1 then a = 2 then a = 3 etc. until a = 9

then...

 # the code will finish adding 1 to a (now a = 10),

printing the

 # result, and then exiting the 'while statement

BLOCK'.

 # --

 # While a < 10: |

 # a = a + 1 |<--[The while statement BLOCK]

 # print (a) |

 # --

And here is the extremely exciting output:

1

2

3

4

5

6

7

8

9

10

(And you thought it couldn't get any worse after turning your computer into a five-dollar calculator?)
So what does the program do? First it sees the line a = 0 and sets a to zero. Then it sees while a < 10: and
so the computer checks to see if a < 10. The first time the computer sees this statement, a is zero, so it is less than
10. In other words, as long as a is less than ten, the computer will run the tabbed in statements. This eventually
makes a equal to ten (by adding one to a again and again) and the while a < 10 is not true any longer.
Reaching that point, the program will stop running the indented lines.
Always remember to put a colon ":" at the end of the while statement line!
Here is another example of the use of while:

a = 1

s = 0

print('Enter Numbers to add to the sum.')

print('Enter 0 to quit.')

while a != 0:

 print('Current Sum:', s)

 a = float(input('Number? '))

 s = s + a

print('Total Sum =', s)

Non-Programmer's Tutorial for Python 3/Print version 18

Enter Numbers to add to the sum.

Enter 0 to quit.

Current Sum: 0

Number? 200

Current Sum: 200.0

Number? -15.25

Current Sum: 184.75

Number? -151.85

Current Sum: 32.9

Number? 10.00

Current Sum: 42.9

Number? 0

Total Sum = 42.9

Notice how print 'Total Sum =', s is only run at the end. The while statement only affects the lines
that are indented with whitespace. The != means does not equal so while a != 0: means as long as a is not
zero run the tabbed statements that follow.
Note that a is a floating point number, and not all floating point numbers can be accurately represented, so using
!= on them can sometimes not work. Try typing in 1.1 in interactive mode.

Infinite loops or Never Ending Loop

Now that we have while loops, it is possible to have programs that run forever. An easy way to do this is to write a
program like this:

while 1 == 1:

 print("Help, I'm stuck in a loop.")

The "==" operator is used to test equality of the expressions on the two sides of the operator, just as "<" was used for
"less than" before (you will get a complete list of all comparison operators in the next chapter).
This program will output Help, I'm stuck in a loop. until the heat death of the universe or you stop it,
because 1 will forever be equal to 1. The way to stop it is to hit the Control (or Ctrl) button and C (the letter) at the
same time. This will kill the program. (Note: sometimes you will have to hit enter after the Control-C.) On some
systems, nothing will stop it, short of killing the process--so avoid!

Examples

Fibonacci sequence

Fibonacci-method1.py

This program calculates the Fibonacci sequence

a = 0

b = 1

count = 0

max_count = 20

while count < max_count:

 count = count + 1

 print(a, end=" ") # Notice the magic end=" " in the print function

 arguments

Non-Programmer's Tutorial for Python 3/Print version 19

 # that keeps it from creating a new line.

 old_a = a # we need to keep track of a since we change it.

 a = b

 b = old_a + b

print() # gets a new (empty) line.

Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Note that the output is on a single line because of the extra argument end=" " in the print arguments.
Fibonacci-method2.py

Simplified and faster method to calculate the Fibonacci sequence

a = 0

b = 1

count = 0

max_count = 10

while count < max_count:

 count = count + 1

 print(a, b, end=" ") # Notice the magic end=" "

 a = a + b

 b = a + b

print() # gets a new (empty) line.

Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Enter password

Password.py

Waits until a password has been entered. Use Control-C to break out

without

the password

#Note that this must not be the password so that the

while loop runs at least once.

password = str()

note that != means not equal

while password != "unicorn":

 password = input("Password: ")

print("Welcome in")

Sample run:

Password: auo

Password: y22

Password: password

Password: open sesame

Non-Programmer's Tutorial for Python 3/Print version 20

Password: unicorn

Welcome in

Exercises
Write a program that asks the user for a Login Name and password. Then when they type "lock", they need to type in
their name and password to unlock the program.

Solution
Write a program that asks the user for a Login Name and password. Then when they type "lock", they need to type in
their name and password to unlock the program.

name = input("What is your UserName: ")

password = input("What is your Password: ")

print("To lock your computer type lock.")

command = None

input1 = None

input2 = None

while command != "lock":

 command = input("What is your command: ")

while input1 != name:

 input1 = input("What is your username: ")

while input2 != password:

 input2 = input("What is your password: ")

print("Welcome back to your system!")

If you would like the program to run continuously, just add a while 1 == 1: loop around the whole thing. You
will have to indent the rest of the program when you add this at the top of the code, but don't worry, you don't have
to do it manually for each line! Just highlight everything you want to indent and click on "Indent" under "Format" in
the top bar of the python window.
Another way of doing this could be:

name = input('Set name: ')

password = input('Set password: ')

while 1 == 1:

 nameguess=""

 passwordguess=""

 key=""

 while (nameguess != name) or (passwordguess != password):

 nameguess = input('Name? ')

 passwordguess = input('Password? ')

 print("Welcome,", name, ". Type lock to lock.")

 while key != "lock":

 key = input("")

Non-Programmer's Tutorial for Python 3/Print version 21

Notice the or in while (nameguess != name) or (passwordguess != password), which we
haven't yet introduced. You can probably figure out how it works.

6. Decisions

If statement
As always I believe I should start each chapter with a warm-up typing exercise, so here is a short program to
compute the absolute value of an integer:

n = int(input("Number? "))

if n < 0:

 print("The absolute value of", n, "is", -n)

else:

 print("The absolute value of", n, "is", n)

Here is the output from the two times that I ran this program:

Number? -34

The absolute value of -34 is 34

Number? 1

The absolute value of 1 is 1

So what does the computer do when it sees this piece of code? First it prompts the user for a number with the
statement "n = int(input("Number? "))". Next it reads the line "if n < 0:". If n is less than zero
Python runs the line "print("The absolute value of", n, "is", -n)". Otherwise it runs the line
"print("The absolute value of", n, "is", n)".
More formally Python looks at whether the expression n < 0 is true or false. An if statement is followed by an
indented block of statements that are run when the expression is true. Optionally after the if statement is an else
statement and another indented block of statements. This second block of statements is run if the expression is false.
There are a number of different tests that an expression can have. Here is a table of all of them:

operator function

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal

!= not equal

Another feature of the if command is the elif statement. It stands for else if and means if the original if
statement is false but the elif part is true, then do the elif part. And if neither the if or elif expressions
are true, then do what's in the else block. Here's an example:

a = 0

while a < 10:

 a = a + 1

 if a > 5:

Non-Programmer's Tutorial for Python 3/Print version 22

 print(a, ">", 5)

 elif a <= 3:

 print(a, "<=", 3)

 else:

 print("Neither test was true")

and the output:

1 <= 3

2 <= 3

3 <= 3

Neither test was true

Neither test was true

6 > 5

7 > 5

8 > 5

9 > 5

10 > 5

Notice how the elif a <= 3 is only tested when the if statement fails to be true. There can be more than one
elif expression, allowing multiple tests to be done in a single if statement.

Examples
This Program Demonstrates the use of the == operator

using numbers

print(5 == 6)

Using variables

x = 5

y = 8

print(x == y)

And the output

False

False

high_low.py

Plays the guessing game higher or lower

This should actually be something that is semi random like the

last digits of the time or something else, but that will have to

wait till a later chapter. (Extra Credit, modify it to be random

after the Modules chapter)

number = 7

guess = -1

print("Guess the number!")

while guess != number:

 guess = int(input("Is it... "))

Non-Programmer's Tutorial for Python 3/Print version 23

 if guess == number:

 print("Hooray! You guessed it right!")

 elif guess < number:

 print("It's bigger...")

 elif guess > number:

 print("It's not so big.")

Sample run:

Guess the number!

Is it... 2

It's bigger...

Is it... 5

It's bigger...

Is it... 10

It's not so big.

Is it... 7

Hooray! You guessed it right!

even.py

Asks for a number.

Prints if it is even or odd

number = float(input("Tell me a number: "))

if number % 2 == 0:

 print(int(number), "is even.")

elif number % 2 == 1:

 print(int(number), "is odd.")

else:

 print(number, "is very strange.")

Sample runs:

Tell me a number: 3

3 is odd.

Tell me a number: 2

2 is even.

Tell me a number: 3.4895

3.4895 is very strange.

average1.py

keeps asking for numbers until 0 is entered.

Prints the average value.

count = 0

sum = 0.0

number = 1 # set to something that will not exit the while loop

Non-Programmer's Tutorial for Python 3/Print version 24

immediately.

print("Enter 0 to exit the loop")

while number != 0:

 number = float(input("Enter a number: "))

 if number != 0:

 count = count + 1

 sum = sum + number

 if number == 0:

 print("The average was:", sum / count)

Sample runs
Sample runs:

Enter 0 to exit the loop

Enter a number: 3

Enter a number: 5

Enter a number: 0

The average was: 4.0

Enter 0 to exit the loop

Enter a number: 1

Enter a number: 4

Enter a number: 3

Enter a number: 0

The average was: 2.66666666667

average2.py

keeps asking for numbers until count numbers have been entered.

Prints the average value.

#Notice that we use an integer to keep track of how many numbers,

but floating point numbers for the input of each number

sum = 0.0

print("This program will take several numbers then average them")

count = int(input("How many numbers would you like to average: "))

current_count = 0

while current_count < count:

 current_count = current_count + 1

 print("Number", current_count)

 number = float(input("Enter a number: "))

 sum = sum + number

print("The average was:", sum / count)

Sample runs:

Non-Programmer's Tutorial for Python 3/Print version 25

This program will take several numbers then average them

How many numbers would you like to average: 2

Number 1

Enter a number: 3

Number 2

Enter a number: 5

The average was: 4.0

This program will take several numbers then average them

How many numbers would you like to average: 3

Number 1

Enter a number: 1

Number 2

Enter a number: 4

Number 3

Enter a number: 3

The average was: 2.66666666667

Exercises
Write a program that asks the user their name, if they enter your name say "That is a nice name", if they enter "John
Cleese" or "Michael Palin", tell them how you feel about them ;), otherwise tell them "You have a nice name."

Solution

name = input('Your name: ')

if name == 'Ada':

 print('That is a nice name.')

elif name == 'John Cleese':

 print('... some funny text.')

elif name == 'Michael Palin':

 print('... some funny text.')

else:

 print('You have a nice name.')

Modify the higher or lower program from this section to keep track of how many times the user has entered the
wrong number. If it is more than 3 times, print "That must have been complicated." at the end, otherwise print "Good
job!"

Solution

number = 7

guess = -1

count = 0

print("Guess the number!")

while guess != number:

 guess = int(input("Is it... "))

 count = count + 1

Non-Programmer's Tutorial for Python 3/Print version 26

 if guess == number:

 print("Hooray! You guessed it right!")

 elif guess < number:

 print("It's bigger...")

 elif guess > number:

 print("It's not so big.")

if count > 3:

 print("That must have been complicated.")

else:

 print("Good job!")

Write a program that asks for two numbers. If the sum of the numbers is greater than 100, print "That is a big
number."

Solution

number1 = float(input('1st number: '))

number2 = float(input('2nd number: '))

if number1 + number2 > 100:

 print('That is a big number.')

7. Debugging

What is debugging?
"As soon as we started programming, we found to our surprise that it wasn't as easy to get programs right as
we had thought. Debugging had to be discovered. I can remember the exact instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in my own programs." — Maurice
Wilkes discovers debugging, 1949

By now if you have been messing around with the programs you have probably found that sometimes the program
does something you didn't want it to do. This is fairly common. Debugging is the process of figuring out what the
computer is doing and then getting it to do what you want it to do. This can be tricky. I once spent nearly a week
tracking down and fixing a bug that was caused by someone putting an x where a y should have been.
This chapter will be more abstract than previous chapters.

Non-Programmer's Tutorial for Python 3/Print version 27

What should the program do?
The first thing to do (this sounds obvious) is to figure out what the program should be doing if it is running correctly.
Come up with some test cases and see what happens. For example, let's say I have a program to compute the
perimeter of a rectangle (the sum of the length of all the edges). I have the following test cases:

height width perimeter

3 4 14

2 3 10

4 4 16

2 2 8

5 1 12

I now run my program on all of the test cases and see if the program does what I expect it to do. If it doesn't then I
need to find out what the computer is doing.
More commonly some of the test cases will work and some will not. If that is the case you should try and figure out
what the working ones have in common. For example here is the output for a perimeter program (you get to see the
code in a minute):

Height: 3

Width: 4

perimeter = 15

Height: 2

Width: 3

perimeter = 11

Height: 4

Width: 4

perimeter = 16

Height: 2

Width: 2

perimeter = 8

Height: 5

Width: 1

perimeter = 8

Notice that it didn't work for the first two inputs, it worked for the next two and it didn't work on the last one. Try
and figure out what is in common with the working ones. Once you have some idea what the problem is finding the
cause is easier. With your own programs you should try more test cases if you need them.

Non-Programmer's Tutorial for Python 3/Print version 28

What does the program do?
The next thing to do is to look at the source code. One of the most important things to do while programming is
reading source code. The primary way to do this is code walkthroughs.
A code walkthrough starts at the first line, and works its way down until the program is done. while loops and if
statements mean that some lines may never be run and some lines are run many times. At each line you figure out
what Python has done.
Lets start with the simple perimeter program. Don't type it in, you are going to read it, not run it. The source code is:

height = int(input("Height: "))

width = int(input("Width: "))

print("perimeter =", width + height + width + width)

Question

What is the first line Python runs?

Answer: The first line is always run first. In this case it is: height = int(input("Height: "))
What does that line do?

Prints Height: , waits for the user to type a string in, and then converts the string to an integer variable
height.

What is the next line that runs?
In general, it is the next line down which is: width = int(input("Width: "))

What does that line do?
Prints Width: , waits for the user to type a number in, and puts what the user types in the variable width.

What is the next line that runs?
When the next line is not indented more or less than the current line, it is the line right afterwards, so it is:
print("perimeter = ", width + height + width + width) (It may also run a function in
the current line, but that's a future chapter.)

What does that line do?
First it prints perimeter = , then it prints the sum of the values contained within the variables, width
and height, from width + height + width + width.

Does width + height + width + width calculate the perimeter properly?
Let's see, perimeter of a rectangle is the bottom (width) plus the left side (height) plus the top (width) plus the
right side (huh?). The last item should be the right side's length, or the height.

Do you understand why some of the times the perimeter was calculated "correctly"?
It was calculated correctly when the width and the height were equal.

The next program we will do a code walkthrough for is a program that is supposed to print out 5 dots on the screen.
However, this is what the program is outputting:

. . . .

And here is the program:

number = 5

while number > 1:

 print(".",end=" ")

 number = number - 1

print()

Non-Programmer's Tutorial for Python 3/Print version 29

This program will be more complex to walkthrough since it now has indented portions (or control structures). Let us
begin.
What is the first line to be run?

The first line of the file: number = 5
What does it do?

Puts the number 5 in the variable number.
What is the next line?

The next line is: while number > 1:
What does it do?

Well, while statements in general look at their expression, and if it is true they do the next indented block of
code, otherwise they skip the next indented block of code.

So what does it do right now?
If number > 1 is true then the next two lines will be run.

So is number > 1?
The last value put into number was 5 and 5 > 1 so yes.

So what is the next line?
Since the while was true the next line is: print(".",end=" ")

What does that line do?
Prints one dot and since the extra argument end=" " exists the next printed text will not be on a different
screen line.

What is the next line?
number = number - 1 since that is following line and there are no indent changes.

What does it do?
It calculates number - 1, which is the current value of number (or 5) subtracts 1 from it, and makes that
the new value of number. So basically it changes number's value from 5 to 4.

What is the next line?
Well, the indent level decreases so we have to look at what type of control structure it is. It is a while loop,
so we have to go back to the while clause which is while number > 1:

What does it do?
It looks at the value of number, which is 4, and compares it to 1 and since 4 > 1 the while loop continues.

What is the next line?
Since the while loop was true, the next line is: print(".",end=" ")

What does it do?
It prints a second dot on the line, ending by a space.

What is the next line?
No indent change so it is: number = number - 1

And what does it do?
It takes the current value of number (4), subtracts 1 from it, which gives it 3 and then finally makes 3 the new
value of number.

What is the next line?

Non-Programmer's Tutorial for Python 3/Print version 30

Since there is an indent change caused by the end of the while loop, the next line is: while number > 1:
What does it do?

It compares the current value of number (3) to 1. 3 > 1 so the while loop continues.
What is the next line?

Since the while loop condition was true the next line is: print(".",end=" ")
And it does what?

A third dot is printed on the line.
What is the next line?

It is: number = number - 1
What does it do?

It takes the current value of number (3) subtracts from it 1 and makes the 2 the new value of number.
What is the next line?

Back up to the start of the while loop: while number > 1:
What does it do?

It compares the current value of number (2) to 1. Since 2 > 1 the while loop continues.
What is the next line?

Since the while loop is continuing: print(".",end=" ")
What does it do?

It discovers the meaning of life, the universe and everything. I'm joking. (I had to make sure you were awake.)
The line prints a fourth dot on the screen.

What is the next line?
It's: number = number - 1

What does it do?
Takes the current value of number (2) subtracts 1 and makes 1 the new value of number.

What is the next line?
Back up to the while loop: while number > 1:

What does the line do?
It compares the current value of number (1) to 1. Since 1 > 1 is false (one is not greater than one), the while
loop exits.

What is the next line?
Since the while loop condition was false the next line is the line after the while loop exits, or: print()

What does that line do?
Makes the screen go to the next line.

Why doesn't the program print 5 dots?
The loop exits 1 dot too soon.

How can we fix that?
Make the loop exit 1 dot later.

And how do we do that?
There are several ways. One way would be to change the while loop to: while number > 0: Another
way would be to change the conditional to: number >= 1 There are a couple others.

Non-Programmer's Tutorial for Python 3/Print version 31

How do I fix my program?
You need to figure out what the program is doing. You need to figure out what the program should do. Figure out
what the difference between the two is. Debugging is a skill that has to be practiced to be learned. If you can't figure
it out after an hour, take a break, talk to someone about the problem or contemplate the lint in your navel. Come back
in a while and you will probably have new ideas about the problem. Good luck.

8. Defining Functions

Creating Functions
To start off this chapter I am going to give you an example of what you could do but shouldn't (so don't type it in):

a = 23

b = -23

if a < 0:

 a = -a

if b < 0:

 b = -b

if a == b:

 print("The absolute values of", a, "and", b, "are equal.")

else:

 print("The absolute values of", a, "and", b, "are different.")

with the output being:

The absolute values of 23 and 23 are equal.

The program seems a little repetitive. Programmers hate to repeat things -- that's what computers are for, after all!
(Note also that finding the absolute value changed the value of the variable, which is why it is printing out 23, and
not -23 in the output.) Fortunately Python allows you to create functions to remove duplication. Here is the rewritten
example:

a = 23

b = -23

def absolute_value(n):

 if n < 0:

 n = -n

 return n

if absolute_value(a) == absolute_value(b):

 print("The absolute values of", a, "and", b, "are equal.")

else:

 print("The absolute values of", a, "and", b, "are different.")

with the output being:

The absolute values of 23 and -23 are equal.

Non-Programmer's Tutorial for Python 3/Print version 32

The key feature of this program is the def statement. def (short for define) starts a function definition. def is
followed by the name of the function absolute_value. Next comes a '(' followed by the parameter n (n is
passed from the program into the function when the function is called). The statements after the ':' are executed when
the function is used. The statements continue until either the indented statements end or a return is encountered.
The return statement returns a value back to the place where the function was called. We already have
encountered a function in our very first program, the print function. Now we can make new functions.
Notice how the values of a and b are not changed. Functions can be used to repeat tasks that don't return values.
Here are some examples:

def hello():

 print("Hello")

def area(width, height):

 return width * height

def print_welcome(name):

 print("Welcome", name)

hello()

hello()

print_welcome("Fred")

w = 4

h = 5

print("width =", w, " height =", h, " area =", area(w, h))

with output being:

Hello

Hello

Welcome Fred

width = 4 height = 5 area = 20

That example shows some more stuff that you can do with functions. Notice that you can use no arguments or two or
more. Notice also when a function doesn't need to send back a value, a return is optional.

Variables in functions
When eliminating repeated code, you often have variables in the repeated code. In Python, these are dealt with in a
special way. So far all variables we have seen are global variables. Functions have a special type of variable called
local variables. These variables only exist while the function is running. When a local variable has the same name as
another variable (such as a global variable), the local variable hides the other. Sound confusing? Well, these next
examples (which are a bit contrived) should help clear things up.

a = 4

def print_func():

 a = 17

 print("in print_func a = ", a)

Non-Programmer's Tutorial for Python 3/Print version 33

print_func()

print("a = ", a)

When run, we will receive an output of:

in print_func a = 17

a = 4

Variable assignments inside a function do not override global variables, they exist only inside the function. Even
though a was assigned a new value inside the function, this newly assigned value was only relevant to
print_func, when the function finishes running, and the a's values is printed again, we see the originally
assigned values.
Here is another more complex example.

a_var = 10

b_var = 15

e_var = 25

def a_func(a_var):

 print("in a_func a_var = ", a_var)

 b_var = 100 + a_var

 d_var = 2 * a_var

 print("in a_func b_var = ", b_var)

 print("in a_func d_var = ", d_var)

 print("in a_func e_var = ", e_var)

 return b_var + 10

c_var = a_func(b_var)

print("a_var = ", a_var)

print("b_var = ", b_var)

print("c_var = ", c_var)

print("d_var = ", d_var)

Output

 in a_func a_var = 15

 in a_func b_var = 115

 in a_func d_var = 30

 in a_func e_var = 25

 a_var = 10

 b_var = 15

 c_var = 125

 d_var =

 Traceback (most recent call last):

 File "C:\def2.py", line 19, in <module>

 print("d_var = ", d_var)

NameError: name 'd_var' is not defined

Non-Programmer's Tutorial for Python 3/Print version 34

In this example the variables a_var, b_var, and d_var are all local variables when they are inside the function
a_func. After the statement return b_var + 10 is run, they all cease to exist. The variable a_var is
automatically a local variable since it is a parameter name. The variables b_var and d_var are local variables
since they appear on the left of an equals sign in the function in the statements b_var = 100 + a_var and
d_var = 2 * a_var .
Inside of the function a_var has no value assigned to it. When the function is called with c_var =

a_func(b_var), 15 is assigned to a_var since at that point in time b_var is 15, making the call to the
function a_func(15). This ends up setting a_var to 15 when it is inside of a_func.
As you can see, once the function finishes running, the local variables a_var and b_var that had hidden the
global variables of the same name are gone. Then the statement print("a_var = ", a_var) prints the value
10 rather than the value 15 since the local variable that hid the global variable is gone.
Another thing to notice is the NameError that happens at the end. This appears since the variable d_var no
longer exists since a_func finished. All the local variables are deleted when the function exits. If you want to get
something from a function, then you will have to use return something.
One last thing to notice is that the value of e_var remains unchanged inside a_func since it is not a parameter
and it never appears on the left of an equals sign inside of the function a_func. When a global variable is accessed
inside a function it is the global variable from the outside.
Functions allow local variables that exist only inside the function and can hide other variables that are outside the
function.

Examples
temperature2.py

#! /usr/bin/python

#-*-coding: utf-8 -*-

converts temperature to Fahrenheit or Celsius

def print_options():

 print("Options:")

 print(" 'p' print options")

 print(" 'c' convert from Celsius")

 print(" 'f' convert from Fahrenheit")

 print(" 'q' quit the program")

def celsius_to_fahrenheit(c_temp):

 return 9.0 / 5.0 * c_temp + 32

def fahrenheit_to_celsius(f_temp):

 return (f_temp - 32.0) * 5.0 / 9.0

choice = "p"

while choice != "q":

 if choice == "c":

 c_temp = float(input("Celsius temperature: "))

 print("Fahrenheit:", celsius_to_fahrenheit(c_temp))

 choice = input("option: ")

 elif choice == "f":

Non-Programmer's Tutorial for Python 3/Print version 35

 f_temp = float(input("Fahrenheit temperature: "))

 print("Celsius:", fahrenheit_to_celsius(f_temp))

 choice = input("option: ")

 elif choice == "p": #Alternatively choice != "q": so that print

when anything unexpected inputed

 print_options()

 choice = input("option: ")

Sample Run:

Options:

 'p' print options

 'c' convert from celsius

 'f' convert from fahrenheit

 'q' quit the program

option: c

Celsius temperature: 30

Fahrenheit: 86.0

option: f

Fahrenheit temperature: 60

Celsius: 15.5555555556

option: q

area2.py

#! /usr/bin/python

#-*-coding: utf-8 -*-

calculates a given rectangle area

def hello():

 print('Hello!')

def area(width, height):

 return width * height

def print_welcome(name):

 print('Welcome,', name)

def positive_input(prompt):

 number = float(input(prompt))

 while number <= 0:

 print('Must be a positive number')

 number = float(input(prompt))

 return number

name = input('Your Name: ')

hello()

print_welcome(name)

print()

Non-Programmer's Tutorial for Python 3/Print version 36

print('To find the area of a rectangle,')

print('enter the width and height below.')

print()

w = positive_input('Width: ')

h = positive_input('Height: ')

print('Width =', w, ' Height =', h, ' so Area =', area(w, h))

Sample Run:

Your Name: Josh

Hello!

Welcome, Josh

To find the area of a rectangle,

enter the width and height below.

Width: -4

Must be a positive number

Width: 4

Height: 3

Width = 4 Height = 3 so Area = 12

Exercises
Rewrite the area2.py program from the Examples above to have a separate function for the area of a square, the area
of a rectangle, and the area of a circle (3.14 * radius**2). This program should include a menu interface.

Solution

def square(L):

 return L * L

def rectangle(width , height):

 return width * height

def circle(radius):

 return 3.14159 * radius ** 2

def options():

 print()

 print("Options:")

 print("s = calculate the area of a square.")

 print("c = calculate the area of a circle.")

 print("r = calculate the area of a rectangle.")

 print("q = quit")

 print()

print("This program will calculate the area of a square, circle or

Non-Programmer's Tutorial for Python 3/Print version 37

rectangle.")

choice = "x"

options()

while choice != "q":

 choice = input("Please enter your choice: ")

 if choice == "s":

 L = float(input("Length of square side: "))

 print("The area of this square is", square(L))

 options()

 elif choice == "c":

 radius = float(input("Radius of the circle: "))

 print("The area of the circle is", circle(radius))

 options()

 elif choice == "r":

 width = float(input("Width of the rectangle: "))

 height = float(input("Height of the rectangle: "))

 print("The area of the rectangle is", rectangle(width, height))

 options()

 elif choice == "q":

 print(" ",end="")

 else:

 print("Unrecognized option.")

 options()

9. Advanced Functions Example
Some people find this section useful, and some find it confusing. If you find it confusing you can skip it. Now we
will do a walk through for the following program:

def mult(a, b):

 if b == 0:

 return 0

 rest = mult(a, b - 1)

 value = a + rest

 return value

print("3 * 2 = ", mult(3, 2))

Basically this program creates a positive integer multiplication function (that is far slower than the built in
multiplication function) and then demonstrates this function with a use of the function. This program demonstrates
the use of recursion, that is a form of iteration (repetition) in which there is a function that repeatedly calls itself until
an exit condition is satisfied. It uses repeated additions to give the same result as mutiplication: e.g. 3 + 3 (addition)
gives the same result as 3 * 2 (multiplication).
Question

What is the first thing the program does?

Answer: The first thing done is the function mult is defined with the lines:

Non-Programmer's Tutorial for Python 3/Print version 38

def mult(a, b):

 if b == 0:

 return 0

 rest = mult(a, b - 1)

 value = a + rest

 return value

This creates a function that takes two parameters and returns a value when it is done. Later this function can be
run.

What happens next?
The next line after the function, print("3 * 2 = ", mult(3, 2)) is run.

And what does this do?
It prints 3 * 2 = and the return value of mult(3, 2)

And what does mult(3, 2) return?
We need to do a walkthrough of the mult function to find out.

What happens next?
The variable a gets the value 3 assigned to it and the variable b gets the value 2 assigned to it.

And then?
The line if b == 0: is run. Since b has the value 2 this is false so the line return 0 is skipped.

And what then?
The line rest = mult(a, b - 1) is run. This line sets the local variable rest to the value of
mult(a, b - 1). The value of a is 3 and the value of b is 2 so the function call is mult(3,1)

So what is the value of mult(3, 1) ?
We will need to run the function mult with the parameters 3 and 1.

So what happens next?
The local variables in the new run of the function are set so that a has the value 3 and b has the value 1.
Since these are local values these do not affect the previous values of a and b.

And then?
Since b has the value 1 the if statement is false, so the next line becomes rest = mult(a, b - 1).

What does this line do?
This line will assign the value of mult(3, 0) to rest.

So what is that value?
We will have to run the function one more time to find that out. This time a has the value 3 and b has the
value 0.

So what happens next?
The first line in the function to run is if b == 0:. b has the value 0 so the next line to run is return 0

And what does the line return 0 do?
This line returns the value 0 out of the function.

So?
So now we know that mult(3, 0) has the value 0. Now we know what the line rest = mult(a, b
- 1) did since we have run the function mult with the parameters 3 and 0. We have finished running
mult(3, 0) and are now back to running mult(3, 1). The variable rest gets assigned the value 0.

Non-Programmer's Tutorial for Python 3/Print version 39

What line is run next?
The line value = a + rest is run next. In this run of the function, a = 3 and rest = 0 so now
value = 3.

What happens next?
The line return value is run. This returns 3 from the function. This also exits from the run of the
function mult(3, 1). After return is called, we go back to running mult(3, 2).

Where were we in mult(3, 2)?
We had the variables a = 3 and b = 2 and were examining the line rest = mult(a, b - 1).

So what happens now?
The variable rest get 3 assigned to it. The next line value = a + rest sets value to 3 + 3 or 6.

So now what happens?
The next line runs, this returns 6 from the function. We are now back to running the line print("3 * 2 =
", mult(3, 2)) which can now print out the 6.

What is happening overall?
Basically we used two facts to calculate the multiple of the two numbers. The first is that any number times 0
is 0 (x * 0 = 0). The second is that a number times another number is equal to the first number plus the
first number times one less than the second number (x * y = x + x * (y - 1)). So what happens is
3 * 2 is first converted into 3 + 3 * 1. Then 3 * 1 is converted into 3 + 3 * 0. Then we know that
any number times 0 is 0 so 3 * 0 is 0. Then we can calculate that 3 + 3 * 0 is 3 + 0 which is 3.
Now we know what 3 * 1 is so we can calculate that 3 + 3 * 1 is 3 + 3 which is 6.

This is how the whole thing works:

3 * 2

3 + 3 * 1

3 + 3 + 3 * 0

3 + 3 + 0

3 + 3

6

Recursion

Programming constructs solving a problem by solving a smaller version of the same problem are called recursive. In
the examples in this chapter, recursion is realized by defining a function calling itself. This facilitates implementing
solutions to programming tasks as it may be sufficient to consider the next step of a problem instead of the whole
problem at once. It is also useful as it allows to express some mathematical concepts with straightforward, easy to
read code.
Any problem that can be solved with recursion could be re-implemented with loops. Using the latter usually results
in better performance. However equivalent implementations using loops are usually harder to get done correctly.
Probably the most intuitive definition of recursion is:
Recursion

If you still don't get it, see recursion.
Try walking through the factorial example if the multiplication example did not make sense.

Non-Programmer's Tutorial for Python 3/Print version 40

Examples
factorial.py

#defines a function that calculates the factorial

def factorial(n):

 if n <= 1:

 return 1

 return n * factorial(n - 1)

print("2! =", factorial(2))

print("3! =", factorial(3))

print("4! =", factorial(4))

print("5! =", factorial(5))

Output:

2! = 2

3! = 6

4! = 24

5! = 120

countdown.py

def count_down(n):

 print(n)

 if n > 0:

 return count_down(n-1)

count_down(5)

Output:

5

4

3

2

1

0

10. Lists

Variables with more than one value
You have already seen ordinary variables that store a single value. However other variable types can hold more than
one value. These are called containers because they can contain more than one object. The simplest type is called a
list. Here is an example of a list being used:

which_one = int(input("What month (1-12)? "))

months = ['January', 'February', 'March', 'April', 'May', 'June',

'July',

Non-Programmer's Tutorial for Python 3/Print version 41

 'August', 'September', 'October', 'November', 'December']

if 1 <= which_one <= 12:

 print("The month is", months[which_one - 1])

and an output example:

What month (1-12)? 3

The month is March

In this example the months is a list. months is defined with the lines months = ['January',

'February', 'March', 'April', 'May', 'June', 'July', and 'August', 'September',
'October', 'November', 'December'] (note that a \ could also be used to split a long line, but that is
not necessary in this case because Python is intelligent enough to recognize that everything within brackets belongs
together). The [and] start and end the list with commas (,) separating the list items. The list is used in
months[which_one - 1]. A list consists of items that are numbered starting at 0. In other words if you wanted
January you would use months[0]. Give a list a number and it will return the value that is stored at that location.
The statement if 1 <= which_one <= 12: will only be true if which_one is between one and twelve
inclusive (in other words it is what you would expect if you have seen that in algebra).
Lists can be thought of as a series of boxes. Each box has a different value. For example, the boxes created by
demolist = ['life', 42, 'the universe', 6, 'and', 9] would look like this:

box number 0 1 2 3 4 5

demolist "life" 42 "the universe" 6 "and" 9

Each box is referenced by its number so the statement demolist[0] would get 'life', demolist[1]
would get 42 and so on up to demolist[5] getting 9.

More features of lists
The next example is just to show a lot of other stuff lists can do (for once I don't expect you to type it in, but you
should probably play around with lists in interactive mode until you are comfortable with them.). Here goes:

demolist = ["life", 42, "the universe", 6, "and", 9]

print("demolist = ",demolist)

demolist.append("everything")

print("after 'everything' was appended demolist is now:")

print(demolist)

print("len(demolist) =", len(demolist))

print("demolist.index(42) =", demolist.index(42))

print("demolist[1] =", demolist[1])

Next we will loop through the list

for c in range(len(demolist)):

 print("demolist[", c, "] =", demolist[c])

del demolist[2]

print("After 'the universe' was removed demolist is now:")

print(demolist)

if "life" in demolist:

Non-Programmer's Tutorial for Python 3/Print version 42

 print("'life' was found in demolist")

else:

 print("'life' was not found in demolist")

if "amoeba" in demolist:

 print("'amoeba' was found in demolist")

if "amoeba" not in demolist:

 print("'amoeba' was not found in demolist")

another_list = [42,7,0,123]

another_list.sort()

print("The sorted another_list is", another_list)

The output is:

demolist = ['life', 42, 'the universe', 6, 'and', 9]

after 'everything' was appended demolist is now:

['life', 42, 'the universe', 6, 'and', 9, 'everything']

len(demolist) = 7

demolist.index(42) = 1

demolist[1] = 42

demolist[0] = life

demolist[1] = 42

demolist[2] = the universe

demolist[3] = 6

demolist[4] = and

demolist[5] = 9

demolist[6] = everything

After 'the universe' was removed demolist is now:

['life', 42, 6, 'and', 9, 'everything']

'life' was found in demolist

'amoeba' was not found in demolist

The sorted another_list is [0, 7, 42, 123]

This example uses a whole bunch of new functions. Notice that you can just print a whole list. Next the
append function is used to add a new item to the end of the list. len returns how many items are in a list. The
valid indexes (as in numbers that can be used inside of the []) of a list range from 0 to len - 1. The index
function tells where the first location of an item is located in a list. Notice how demolist.index(42) returns 1,
and when demolist[1] is run it returns 42. To get help on all the functions a list provides for you, type
help(list) in the interactive Python interpreter.
The line # Next we will loop through the list is a just a reminder to the programmer (also called a
comment). Python ignores everything that is written after a # on the current line. Next the lines:

for c in range(len(demolist)):

 print('demolist[', c, '] =', demolist[c])

create a variable c, which starts at 0 and is incremented until it reaches the last index of the list. Meanwhile the
print statement prints out each element of the list.

Non-Programmer's Tutorial for Python 3/Print version 43

A much better way to do the above is:

for c, x in enumerate(demolist):

 print("demolist[", c, "] =", x)

The del command can be used to remove a given element in a list. The next few lines use the in operator to test
if an element is in or is not in a list. The sort function sorts the list. This is useful if you need a list in order from
smallest number to largest or alphabetical. Note that this rearranges the list. In summary, for a list, the following
operations occur:

example explanation

demolist[2] accesses the element at index 2

demolist[2] = 3 sets the element at index 2 to be 3

del demolist[2] removes the element at index 2

len(demolist) returns the length of demolist

"value" in demolist is True if "value" is an element in demolist

"value" not in demolist is True if "value" is not an element in demolist

another_list.sort() sorts another_list. Note that the list must be all numbers or all strings to be sorted.

demolist.index("value") returns the index of the first place that "value" occurs

demolist.append("value") adds an element "value" at the end of the list

demolist.remove("value") removes the first occurrence of value from demolist (same as del
demolist[demolist.index("value")])

This next example uses these features in a more useful way:

menu_item = 0

namelist = []

while menu_item != 9:

 print("--------------------")

 print("1. Print the list")

 print("2. Add a name to the list")

 print("3. Remove a name from the list")

 print("4. Change an item in the list")

 print("9. Quit")

 menu_item = int(input("Pick an item from the menu: "))

 if menu_item == 1:

 current = 0

 if len(namelist) > 0:

 while current < len(namelist):

 print(current, ".", namelist[current])

 current = current + 1

 else:

 print("List is empty")

 elif menu_item == 2:

 name = input("Type in a name to add: ")

 namelist.append(name)

 elif menu_item == 3:

 del_name = input("What name would you like to remove: ")

Non-Programmer's Tutorial for Python 3/Print version 44

 if del_name in namelist:

 # namelist.remove(del_name) would work just as fine

 item_number = namelist.index(del_name)

 del namelist[item_number]

 # The code above only removes the first occurrence of

 # the name. The code below from Gerald removes all.

 # while del_name in namelist:

 # item_number = namelist.index(del_name)

 # del namelist[item_number]

 else:

 print(del_name, "was not found")

 elif menu_item == 4:

 old_name = input("What name would you like to change: ")

 if old_name in namelist:

 item_number = namelist.index(old_name)

 new_name = input("What is the new name: ")

 namelist[item_number] = new_name

 else:

 print(old_name, "was not found")

print("Goodbye")

And here is part of the output:

1. Print the list

2. Add a name to the list

3. Remove a name from the list

4. Change an item in the list

9. Quit

Pick an item from the menu: 2

Type in a name to add: Jack

Pick an item from the menu: 2

Type in a name to add: Jill

Pick an item from the menu: 1

0 . Jack

1 . Jill

Pick an item from the menu: 3

What name would you like to remove: Jack

Pick an item from the menu: 4

What name would you like to change: Jill

What is the new name: Jill Peters

Non-Programmer's Tutorial for Python 3/Print version 45

Pick an item from the menu: 1

0 . Jill Peters

Pick an item from the menu: 9

Goodbye

That was a long program. Let's take a look at the source code. The line namelist = [] makes the variable
namelist a list with no items (or elements). The next important line is while menu_item != 9:. This line
starts a loop that allows the menu system for this program. The next few lines display a menu and decide which part
of the program to run.
The section

current = 0

if len(namelist) > 0:

 while current < len(namelist):

 print(current, ".", namelist[current])

 current = current + 1

else:

 print("List is empty")

goes through the list and prints each name. len(namelist) tells how many items are in the list. If len returns
0, then the list is empty.
Then, a few lines later, the statement namelist.append(name) appears. It uses the append function to add
an item to the end of the list. Jump down another two lines, and notice this section of code:

item_number = namelist.index(del_name)

del namelist[item_number]

Here the index function is used to find the index value that will be used later to remove the item. del
namelist[item_number] is used to remove a element of the list.
The next section

old_name = input("What name would you like to change: ")

if old_name in namelist:

 item_number = namelist.index(old_name)

 new_name = input("What is the new name: ")

 namelist[item_number] = new_name

else:

 print(old_name, "was not found")

uses index to find the item_number and then puts new_name where the old_name was.
Congratulations, with lists under your belt, you now know enough of the language that you could do any
computations that a computer can do (this is technically known as Turing-Completeness). Of course, there are still
many features that are used to make your life easier.

http://en.wikipedia.org/wiki/Turing_completeness

Non-Programmer's Tutorial for Python 3/Print version 46

Examples
test.py

This program runs a test of knowledge

First get the test questions

Later this will be modified to use file io.

def get_questions():

 # notice how the data is stored as a list of lists

 return [["What color is the daytime sky on a clear day? ", "blue"],

 ["What is the answer to life, the universe and everything?

", "42"],

 ["What is a three letter word for mouse trap? ", "cat"]]

This will test a single question

it takes a single question in

it returns True if the user typed the correct answer, otherwise False

def check_question(question_and_answer):

 # extract the question and the answer from the list

 # This function takes a list with two elements, a question and an

answer.

 question = question_and_answer[0]

 answer = question_and_answer[1]

 # give the question to the user

 given_answer = input(question)

 # compare the user's answer to the tester's answer

 if answer == given_answer:

 print("Correct")

 return True

 else:

 print("Incorrect, correct was:", answer)

 return False

This will run through all the questions

def run_test(questions):

 if len(questions) == 0:

 print("No questions were given.")

 # the return exits the function

 return

 index = 0

 right = 0

 while index < len(questions):

 # Check the question

 #Note that this is extracting a question and answer list from

the list of lists.

 if check_question(questions[index]):

 right = right + 1

Non-Programmer's Tutorial for Python 3/Print version 47

 # go to the next question

 index = index + 1

 # notice the order of the computation, first multiply, then divide

 print("You got", right * 100 / len(questions),\

 "% right out of", len(questions))

now let's get the questions from the get_questions function, and

send the returned list of lists as an argument to the run_test

function.

run_test(get_questions())

The values True and False point to 1 and 0, respectively. They are often used in sanity checks, loop conditions
etc. You will learn more about this a little bit later (chapter Boolean Expressions). Please note that get_questions() is
essentially a list because even though it's technically a function, returning a list of lists is the only thing it does.
Sample Output:

What color is the daytime sky on a clear day? green

Incorrect, correct was: blue

What is the answer to life, the universe and everything? 42

Correct

What is a three letter word for mouse trap? cat

Correct

You got 66 % right out of 3

Exercises
Expand the test.py program so it has a menu giving the option of taking the test, viewing the list of questions and
answers, and an option to quit. Also, add a new question to ask, "What noise does a truly advanced machine make?"
with the answer of "ping".

Solution
Expand the test.py program so it has menu giving the option of taking the test, viewing the list of questions and
answers, and an option to quit. Also, add a new question to ask, "What noise does a truly advanced machine make?"
with the answer of "ping".

This program runs a test of knowledge

questions = [["What color is the daytime sky on a clear day? ",

"blue"],

 ["What is the answer to life, the universe and everything?

 ", "42"],

 ["What is a three letter word for mouse trap? ", "cat"],

 ["What noise does a truly advanced machine make?",

"ping"]]

This will test a single question

it takes a single question in

it returns True if the user typed the correct answer, otherwise False

http://en.wikibooks.org/w/index.php?title=../Boolean_Expressions

Non-Programmer's Tutorial for Python 3/Print version 48

def check_question(question_and_answer):

 # extract the question and the answer from the list

 question = question_and_answer[0]

 answer = question_and_answer[1]

 # give the question to the user

 given_answer = input(question)

 # compare the user's answer to the testers answer

 if answer == given_answer:

 print("Correct")

 return True

 else:

 print("Incorrect, correct was:", answer)

 return False

This will run through all the questions

def run_test(questions):

 if len(questions) == 0:

 print("No questions were given.")

 # the return exits the function

 return

 index = 0

 right = 0

 while index < len(questions):

 # Check the question

 if check_question(questions[index]):

 right = right + 1

 # go to the next question

 index = index + 1

 # notice the order of the computation, first multiply, then divide

 print("You got", right * 100 / len(questions),

 "% right out of", len(questions))

#showing a list of questions and answers

def showquestions():

 q = 0

 while q < len(questions):

 a = 0

 print("Q:" , questions[q][a])

 a = 1

 print("A:" , questions[q][a])

 q = q + 1

now let's define the menu function

def menu():

Non-Programmer's Tutorial for Python 3/Print version 49

 print("-----------------")

 print("Menu:")

 print("1 - Take the test")

 print("2 - View a list of questions and answers")

 print("3 - View the menu")

 print("5 - Quit")

 print("-----------------")

choice = "3"

while choice != "5":

 if choice == "1":

 run_test(questions)

 elif choice == "2":

 showquestions()

 elif choice == "3":

 menu()

 print()

 choice = input("Choose your option from the menu above: ")

11. For Loops
And here is the new typing exercise for this chapter:

onetoten = range(1, 11)

for count in onetoten:

 print(count)

and the ever-present output:

1

2

3

4

5

6

7

8

9

10

The output looks awfully familiar but the program code looks different. The first line uses the range function. The
range function uses two arguments like this range(start, finish). start is the first number that is
produced. finish is one larger than the last number. Note that this program could have been done in a shorter
way:

for count in range(1, 11):

 print(count)

Non-Programmer's Tutorial for Python 3/Print version 50

The range function returns an iterable. This can be converted into a list with the list function. Here are some
examples to show what happens with the range command:

>>> range(1, 10)

range(1, 10)

>>> list(range(1, 10))

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(-32, -20))

[-32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21]

>>> list(range(5,21))

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

>>> list(range(5))

[0, 1, 2, 3, 4]

>>> list(range(21, 5))

[]

The next line for count in onetoten: uses the for control structure. A for control structure looks like
for variable in list:. list is gone through starting with the first element of the list and going to the last.
As for goes through each element in a list it puts each into variable. That allows variable to be used in
each successive time the for loop is run through. Here is another example (you don't have to type this) to
demonstrate:

demolist = ['life', 42, 'the universe', 6, 'and', 7, 'everything']

for item in demolist:

 print("The current item is:",item)

The output is:

The current item is: life

The current item is: 42

The current item is: the universe

The current item is: 6

The current item is: and

The current item is: 7

The current item is: everything

Notice how the for loop goes through and sets item to each element in the list. So, what is for good for? The
first use is to go through all the elements of a list and do something with each of them. Here's a quick way to add up
all the elements:

list = [2, 4, 6, 8]

sum = 0

for num in list:

 sum = sum + num

print("The sum is:", sum)

with the output simply being:
The sum is: 20
Or you could write a program to find out if there are any duplicates in a list like this program does:

Non-Programmer's Tutorial for Python 3/Print version 51

list = [4, 5, 7, 8, 9, 1, 0, 7, 10]

list.sort()

prev = None

for item in list:

 if prev == item:

 print("Duplicate of", prev, "found")

 prev = item

and for good measure:

Duplicate of 7 found

Okay, so how does it work? Here is a special debugging version to help you understand (you don't need to type this
in):

l = [4, 5, 7, 8, 9, 1, 0, 7, 10]

print("l = [4, 5, 7, 8, 9, 1, 0, 7, 10]", "\t\tl:", l)

l.sort()

print("l.sort()", "\t\tl:", l)

prev = l[0]

print("prev = l[0]", "\t\tprev:", prev)

del l[0]

print("del l[0]", "\t\tl:", l)

for item in l:

 if prev == item:

 print("Duplicate of", prev, "found")

 print("if prev == item:", "\t\tprev:", prev, "\titem:", item)

 prev = item

 print("prev = item", "\t\tprev:", prev, "\titem:", item)

with the output being:

l = [4, 5, 7, 8, 9, 1, 0, 7, 10] l: [4, 5, 7, 8, 9, 1, 0, 7, 10]

l.sort() l: [0, 1, 4, 5, 7, 7, 8, 9, 10]

prev = l[0] prev: 0

del l[0] l: [1, 4, 5, 7, 7, 8, 9, 10]

if prev == item: prev: 0 item: 1

prev = item prev: 1 item: 1

if prev == item: prev: 1 item: 4

prev = item prev: 4 item: 4

if prev == item: prev: 4 item: 5

prev = item prev: 5 item: 5

if prev == item: prev: 5 item: 7

prev = item prev: 7 item: 7

Duplicate of 7 found

if prev == item: prev: 7 item: 7

prev = item prev: 7 item: 7

if prev == item: prev: 7 item: 8

prev = item prev: 8 item: 8

if prev == item: prev: 8 item: 9

Non-Programmer's Tutorial for Python 3/Print version 52

prev = item prev: 9 item: 9

if prev == item: prev: 9 item: 10

prev = item prev: 10 item: 10

The reason I put so many print statements in the code was so that you can see what is happening in each line. (By
the way, if you can't figure out why a program is not working, try putting in lots of print statements in places where
you want to know what is happening.) First the program starts with a boring old list. Next the program sorts the list.
This is so that any duplicates get put next to each other. The program then initializes a prev(ious) variable. Next the
first element of the list is deleted so that the first item is not incorrectly thought to be a duplicate. Next a for loop
is gone into. Each item of the list is checked to see if it is the same as the previous. If it is a duplicate was found. The
value of prev is then changed so that the next time the for loop is run through prev is the previous item to the
current. Sure enough, the 7 is found to be a duplicate. (Notice how \t is used to print a tab.)
The other way to use for loops is to do something a certain number of times. Here is some code to print out the
first 9 numbers of the Fibonacci series:

a = 1

b = 1

for c in range(1, 10):

 print(a, end=" ")

 n = a + b

 a = b

 b = n

with the surprising output:

1 1 2 3 5 8 13 21 34

Everything that can be done with for loops can also be done with while loops but for loops give an easy way
to go through all the elements in a list or to do something a certain number of times.

12. Boolean Expressions
Here is a little example of boolean expressions (you don't have to type it in):

a = 6

b = 7

c = 42

print(1, a == 6)

print(2, a == 7)

print(3, a == 6 and b == 7)

print(4, a == 7 and b == 7)

print(5, not a == 7 and b == 7)

print(6, a == 7 or b == 7)

print(7, a == 7 or b == 6)

print(8, not (a == 7 and b == 6))

print(9, not a == 7 and b == 6)

With the output being:

1 True

2 False

Non-Programmer's Tutorial for Python 3/Print version 53

3 True

4 False

5 True

6 True

7 False

8 True

9 False

What is going on? The program consists of a bunch of funny looking print statements. Each print statement
prints a number and an expression. The number is to help keep track of which statement I am dealing with. Notice
how each expression ends up being either False or True. In Python false can also be written as 0 and true as 1.
The lines:

print(1, a == 6)

print(2, a == 7)

print out a True and a False respectively just as expected since the first is true and the second is false. The third
print, print(3, a == 6 and b == 7), is a little different. The operator and means if both the statement
before and the statement after are true then the whole expression is true otherwise the whole expression is false. The
next line, print(4, a == 7 and b == 7), shows how if part of an and expression is false, the whole thing
is false. The behavior of and can be summarized as follows:

expression result

true and true true

true and false false

false and true false

false and false false

Notice that if the first expression is false Python does not check the second expression since it knows the whole
expression is false. Try running False and print("Hi") and compare this to running True and

print("Hi") The technical term for this is short-circuit evaluation
The next line, print(5, not a == 7 and b == 7), uses the not operator. not just gives the opposite of
the expression. (The expression could be rewritten as print(5, a != 7 and b == 7)). Here is the table:

expression result

not true false

not false true

The two following lines, print(6, a == 7 or b == 7) and print(7, a == 7 or b == 6), use the
or operator. The or operator returns true if the first expression is true, or if the second expression is true or both
are true. If neither are true it returns false. Here's the table:

http://en.wikipedia.org/wiki/Short-circuit_evaluation

Non-Programmer's Tutorial for Python 3/Print version 54

expression result

true or true true

true or false true

false or true true

false or false false

Notice that if the first expression is true Python doesn't check the second expression since it knows the whole
expression is true. This works since or is true if at least one half of the expression is true. The first part is true so
the second part could be either false or true, but the whole expression is still true.
The next two lines, print(8, not (a == 7 and b == 6)) and print(9, not a == 7 and b
== 6), show that parentheses can be used to group expressions and force one part to be evaluated first. Notice that
the parentheses changed the expression from false to true. This occurred since the parentheses forced the not to
apply to the whole expression instead of just the a == 7 portion.
Here is an example of using a boolean expression:

list = ["Life", "The Universe", "Everything", "Jack", "Jill", "Life",

"Jill"]

make a copy of the list. See the More on Lists chapter to explain

what [:] means.

copy = list[:]

sort the copy

copy.sort()

prev = copy[0]

del copy[0]

count = 0

go through the list searching for a match

while count < len(copy) and copy[count] != prev:

 prev = copy[count]

 count = count + 1

If a match was not found then count can't be < len

since the while loop continues while count is < len

and no match is found

if count < len(copy):

 print("First Match:", prev)

And here is the output:

First Match: Jill

This program works by continuing to check for match while count < len(copy) and copy[count]
is not equal to prev. When either count is greater than the last index of copy or a match has been
found the and is no longer true so the loop exits. The if simply checks to make sure that the while exited
because a match was found.

Non-Programmer's Tutorial for Python 3/Print version 55

The other "trick" of and is used in this example. If you look at the table for and notice that the third entry is "false
and false". If count >= len(copy) (in other words count < len(copy) is false) then copy[count]
is never looked at. This is because Python knows that if the first is false then they can't both be true. This is known as
a short circuit and is useful if the second half of the and will cause an error if something is wrong. I used the first
expression (count < len(copy)) to check and see if count was a valid index for copy. (If you don't believe
me remove the matches "Jill" and "Life", check that it still works and then reverse the order of count <
len(copy) and copy[count] != prev to copy[count] != prev and count < len(copy).)
Boolean expressions can be used when you need to check two or more different things at once.

A note on Boolean Operators
A common mistake for people new to programming is a misunderstanding of the way that boolean operators works,
which stems from the way the python interpreter reads these expressions. For example, after initially learning about
"and " and "or" statements, one might assume that the expression x == ('a' or 'b') would check to see if
the variable x was equivalent to one of the strings 'a' or 'b'. This is not so. To see what I'm talking about, start
an interactive session with the interpreter and enter the following expressions:

>>> 'a' == ('a' or 'b')

>>> 'b' == ('a' or 'b')

>>> 'a' == ('a' and 'b')

>>> 'b' == ('a' and 'b')

And this will be the unintuitive result:

>>> 'a' == ('a' or 'b')

True

>>> 'b' == ('a' or 'b')

False

>>> 'a' == ('a' and 'b')

False

>>> 'b' == ('a' and 'b')

True

At this point, the and and or operators seem to be broken. It doesn't make sense that, for the first two expressions,
'a' is equivalent to 'a' or 'b' while 'b' is not. Furthermore, it doesn't make any sense that 'b' is equivalent to
'a' and 'b'. After examining what the interpreter does with boolean operators, these results do in fact exactly what
you are asking of them, it's just not the same as what you think you are asking.
When the Python interpreter looks at an or expression, it takes the first statement and checks to see if it is true. If
the first statement is true, then Python returns that object's value without checking the second statement. This is
because for an or expression, the whole thing is true if one of the values is true; the program does not need to
bother with the second statement. On the other hand, if the first value is evaluated as false Python checks the second
half and returns that value. That second half determines the truth value of the whole expression since the first half
was false. This "laziness" on the part of the interpreter is called "short circuiting" and is a common way of evaluating
boolean expressions in many programming languages.
Similarly, for an and expression, Python uses a short circuit technique to speed truth value evaluation. If the first
statement is false then the whole thing must be false, so it returns that value. Otherwise if the first value is true it
checks the second and returns that value.
One thing to note at this point is that the boolean expression returns a value indicating True or False, but that
Python considers a number of different things to have a truth value assigned to them. To check the truth value of any

Non-Programmer's Tutorial for Python 3/Print version 56

given object x, you can use the fuction bool(x) to see its truth value. Below is a table with examples of the truth
values of various objects:

True False

True False

1 0

Numbers other than zero The string 'None'

Nonempty strings Empty strings

Nonempty lists Empty lists

Nonempty dictionaries Empty dictionaries

Now it is possible to understand the perplexing results we were getting when we tested those boolean expressions
before. Let's take a look at what the interpreter "sees" as it goes through that code:
First case:

>>> 'a' == ('a' or 'b') # Look at parentheses first, so evaluate expression "('a' or 'b')"

 # 'a' is a nonempty string, so the first value is True

 # Return that first value: 'a'

>>> 'a' == 'a' # the string 'a' is equivalent to the string 'a', so expression is True

True

Second case:

>>> 'b' == ('a' or 'b') # Look at parentheses first, so evaluate expression "('a' or 'b')"

 # 'a' is a nonempty string, so the first value is True

 # Return that first value: 'a'

>>> 'b' == 'a' # the string 'b' is not equivalent to the string 'a', so expression is False

False

Third case:

>>> 'a' == ('a' and 'b') # Look at parentheses first, so evaluate expression "('a' and 'b')"

 # 'a' is a nonempty string, so the first value is True, examine second value

 # 'b' is a nonempty string, so second value is True

 # Return that second value as result of whole expression: 'b'

>>> 'a' == 'b' # the string 'a' is not equivalent to the string 'b', so expression is False

False

Fourth case:

>>> 'b' == ('a' and 'b') # Look at parentheses first, so evaluate expression "('a' and 'b')"

 # 'a' is a nonempty string, so the first value is True, examine second value

 # 'b' is a nonempty string, so second value is True

 # Return that second value as result of whole expression: 'b'

>>> 'b' == 'b' # the string 'b' is equivalent to the string 'b', so expression is True

True

So Python was really doing its job when it gave those apparently bogus results. As mentioned previously, the
important thing is to recognize what value your boolean expression will return when it is evaluated, because it isn't
always obvious.

Non-Programmer's Tutorial for Python 3/Print version 57

Going back to those initial expressions, this is how you would write them out so they behaved in a way that you
want:

>>> 'a' == 'a' or 'a' == 'b'

True

>>> 'b' == 'a' or 'b' == 'b'

True

>>> 'a' == 'a' and 'a' == 'b'

False

>>> 'b' == 'a' and 'b' == 'b'

False

When these comparisons are evaluated they return truth values in terms of True or False, not strings, so we get the
proper results.

Examples
password1.py

This program asks a user for a name and a password.

It then checks them to make sure that the user is allowed in.

name = input("What is your name? ")

password = input("What is the password? ")

if name == "Josh" and password == "Friday":

 print("Welcome Josh")

elif name == "Fred" and password == "Rock":

 print("Welcome Fred")

else:

 print("I don't know you.")

Sample runs

What is your name? Josh

What is the password? Friday

Welcome Josh

What is your name? Bill

What is the password? Money

I don't know you.

Exercises
Write a program that has a user guess your name, but they only get 3 chances to do so until the program quits.

Solution

print("Try to guess my name!")

count = 1

name = "guilherme"

guess = input("What is my name? ")

while count < 3 and guess.lower() != name: # .lower allows things like Guilherme to still match

Non-Programmer's Tutorial for Python 3/Print version 58

 print("You are wrong!")

 guess = input("What is my name? ")

 count = count + 1

if guess.lower() != name:

 print("You are wrong!") # this message isn't printed in the third

chance, so we print it now

 print("You ran out of chances.")

else:

 print("Yes! My name is", name + "!")

13. Dictionaries
This chapter is about dictionaries. Dictionaries have keys and values. The keys are used to find the values. Here is an
example of a dictionary in use:

def print_menu():

 print('1. Print Phone Numbers')

 print('2. Add a Phone Number')

 print('3. Remove a Phone Number')

 print('4. Lookup a Phone Number')

 print('5. Quit')

 print()

numbers = {}

menu_choice = 0

print_menu()

while menu_choice != 5:

 menu_choice = int(input("Type in a number (1-5): "))

 if menu_choice == 1:

 print("Telephone Numbers:")

 for x in numbers.keys():

 print("Name: ", x, "\tNumber:", numbers[x])

 print()

 elif menu_choice == 2:

 print("Add Name and Number")

 name = input("Name: ")

 phone = input("Number: ")

 numbers[name] = phone

 elif menu_choice == 3:

 print("Remove Name and Number")

 name = input("Name: ")

 if name in numbers:

 del numbers[name]

 else:

 print(name, "was not found")

Non-Programmer's Tutorial for Python 3/Print version 59

 elif menu_choice == 4:

 print("Lookup Number")

 name = input("Name: ")

 if name in numbers:

 print("The number is", numbers[name])

 else:

 print(name, "was not found")

 elif menu_choice != 5:

 print_menu()

And here is my output:

1. Print Phone Numbers

2. Add a Phone Number

3. Remove a Phone Number

4. Lookup a Phone Number

5. Quit

Type in a number (1-5): 2

Add Name and Number

Name: Joe

Number: 545-4464

Type in a number (1-5): 2

Add Name and Number

Name: Jill

Number: 979-4654

Type in a number (1-5): 2

Add Name and Number

Name: Fred

Number: 132-9874

Type in a number (1-5): 1

Telephone Numbers:

Name: Jill Number: 979-4654

Name: Joe Number: 545-4464

Name: Fred Number: 132-9874

Type in a number (1-5): 4

Lookup Number

Name: Joe

The number is 545-4464

Type in a number (1-5): 3

Remove Name and Number

Name: Fred

Type in a number (1-5): 1

Telephone Numbers:

Name: Jill Number: 979-4654

Name: Joe Number: 545-4464

Non-Programmer's Tutorial for Python 3/Print version 60

Type in a number (1-5): 5

This program is similar to the name list earlier in the chapter on lists. Here's how the program works. First the
function print_menu is defined. print_menu just prints a menu that is later used twice in the program. Next
comes the funny looking line numbers = {}. All that this line does is to tell Python that numbers is a
dictionary. The next few lines just make the menu work. The lines

for x in numbers.keys():

 print "Name:", x, "\tNumber:", numbers[x]

go through the dictionary and print all the information. The function numbers.keys() returns a list that is then
used by the for loop. The list returned by keys() is not in any particular order so if you want it in alphabetic
order it must be sorted. Similar to lists the statement numbers[x] is used to access a specific member of the
dictionary. Of course in this case x is a string. Next the line numbers[name] = phone adds a name and phone
number to the dictionary. If name had already been in the dictionary phone would replace whatever was there
before. Next the lines

if name in numbers:

 del numbers[name]

see if a name is in the dictionary and remove it if it is. The operator name in numbers returns true if name is
in numbers but otherwise returns false. The line del numbers[name] removes the key name and the value
associated with that key. The lines

if name in numbers:

 print("The number is", numbers[name])

check to see if the dictionary has a certain key and if it does prints out the number associated with it. Lastly if the
menu choice is invalid it reprints the menu for your viewing pleasure.
A recap: Dictionaries have keys and values. Keys can be strings or numbers. Keys point to values. Values can be any
type of variable (including lists or even dictionaries (those dictionaries or lists of course can contain dictionaries or
lists themselves (scary right? :-)))). Here is an example of using a list in a dictionary:

max_points = [25, 25, 50, 25, 100]

assignments = ['hw ch 1', 'hw ch 2', 'quiz ', 'hw ch 3', 'test']

students = {'#Max': max_points}

def print_menu():

 print("1. Add student")

 print("2. Remove student")

 print("3. Print grades")

 print("4. Record grade")

 print("5. Print Menu")

 print("6. Exit")

def print_all_grades():

 print('\t', end=' ')

 for i in range(len(assignments)):

 print(assignments[i], '\t', end=' ')

 print()

 keys = list(students.keys())

Non-Programmer's Tutorial for Python 3/Print version 61

 keys.sort()

 for x in keys:

 print(x, '\t', end=' ')

 grades = students[x]

 print_grades(grades)

def print_grades(grades):

 for i in range(len(grades)):

 print(grades[i], '\t', end=' ')

 print()

print_menu()

menu_choice = 0

while menu_choice != 6:

 print()

 menu_choice = int(input("Menu Choice (1-6): "))

 if menu_choice == 1:

 name = input("Student to add: ")

 students[name] = [0] * len(max_points)

 elif menu_choice == 2:

 name = input("Student to remove: ")

 if name in students:

 del students[name]

 else:

 print("Student:", name, "not found")

 elif menu_choice == 3:

 print_all_grades()

 elif menu_choice == 4:

 print("Record Grade")

 name = input("Student: ")

 if name in students:

 grades = students[name]

 print("Type in the number of the grade to record")

 print("Type a 0 (zero) to exit")

 for i in range(len(assignments)):

 print(i + 1, assignments[i], '\t', end=' ')

 print()

 print_grades(grades)

 which = 1234

 while which != -1:

 which = int(input("Change which Grade: "))

 which -= 1 #same as which = which - 1

 if 0 <= which < len(grades):

 grade = int(input("Grade: "))

 grades[which] = grade

 elif which != -1:

 print("Invalid Grade Number")

Non-Programmer's Tutorial for Python 3/Print version 62

 else:

 print("Student not found")

 elif menu_choice != 6:

 print_menu()

and here is a sample output:

1. Add student

2. Remove student

3. Print grades

4. Record grade

5. Print Menu

6. Exit

Menu Choice (1-6): 3

 hw ch 1 hw ch 2 quiz hw ch 3 test

#Max 25 25 50 25 100

Menu Choice (1-6): 5

1. Add student

2. Remove student

3. Print grades

4. Record grade

5. Print Menu

6. Exit

Menu Choice (1-6): 1

Student to add: Bill

Menu Choice (1-6): 4

Record Grade

Student: Bill

Type in the number of the grade to record

Type a 0 (zero) to exit

1 hw ch 1 2 hw ch 2 3 quiz 4 hw ch 3 5 test

0 0 0 0 0

Change which Grade: 1

Grade: 25

Change which Grade: 2

Grade: 24

Change which Grade: 3

Grade: 45

Change which Grade: 4

Grade: 23

Change which Grade: 5

Grade: 95

Change which Grade: 0

Non-Programmer's Tutorial for Python 3/Print version 63

Menu Choice (1-6): 3

 hw ch 1 hw ch 2 quiz hw ch 3 test

#Max 25 25 50 25 100

Bill 25 24 45 23 95

Menu Choice (1-6): 6

Heres how the program works. Basically the variable students is a dictionary with the keys being the name of
the students and the values being their grades. The first two lines just create two lists. The next line students =
{'#Max': max_points} creates a new dictionary with the key {#Max} and the value is set to be [25, 25,
50, 25, 100] (since thats what max_points was when the assignment is made) (I use the key #Max since
is sorted ahead of any alphabetic characters). Next print_menu is defined. Next the print_all_grades
function is defined in the lines:

def print_all_grades():

 print('\t',end=" ")

 for i in range(len(assignments)):

 print(assignments[i], '\t',end=" ")

 print()

 keys = list(students.keys())

 keys.sort()

 for x in keys:

 print(x, '\t',end=' ')

 grades = students[x]

 print_grades(grades)

Notice how first the keys are gotten out of the students dictionary with the keys function in the line keys =
list(students.keys()). keys is a iterable, and it is converted to list so all the functions for lists can be
used on it. Next the keys are sorted in the line keys.sort(). for is used to go through all the keys. The grades
are stored as a list inside the dictionary so the assignment grades = students[x] gives grades the list that
is stored at the key x. The function print_grades just prints a list and is defined a few lines later.
The later lines of the program implement the various options of the menu. The line students[name] = [0] *
len(max_points) adds a student to the key of their name. The notation [0] * len(max_points) just
creates a list of 0's that is the same length as the max_points list.
The remove student entry just deletes a student similar to the telephone book example. The record grades choice is a
little more complex. The grades are retrieved in the line grades = students[name] gets a reference to the
grades of the student name. A grade is then recorded in the line grades[which] = grade. You may notice
that grades is never put back into the students dictionary (as in no students[name] = grades). The reason
for the missing statement is that grades is actually another name for students[name] and so changing
grades changes student[name].
Dictionaries provide a easy way to link keys to values. This can be used to easily keep track of data that is attached
to various keys.

Non-Programmer's Tutorial for Python 3/Print version 64

14. Using Modules
Here's this chapter's typing exercise (name it cal.py (import actually looks for a file named calendar.py and reads
it in. If the file is named calendar.py and it sees a "import calendar" it tries to read in itself which works poorly at
best.)):

import calendar

year = int(input("Type in the year number: "))

calendar.prcal(year)

And here is part of the output I got:

Type in the year number: 2001

 2001

 January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 3 4 5 6 7 1 2 3 4 1 2 3 4

8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11

15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18

22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 25

29 30 31 26 27 28 26 27 28 29 30 31

(I skipped some of the output, but I think you get the idea.) So what does the program do? The first line import
calendar uses a new command import. The command import loads a module (in this case the calendar
module). To see the commands available in the standard modules either look in the library reference for python (if
you downloaded it) or go to http:/ / docs. python. org/ library/ . If you look at the documentation for the calendar
module, it lists a function called prcal that prints a calendar for a year. The line calendar.prcal(year)
uses this function. In summary to use a module import it and then use module_name.function for
functions in the module. Another way to write the program is:

from calendar import prcal

year = int(input("Type in the year number: "))

prcal(year)

This version imports a specific function from a module. Here is another program that uses the Python Library (name
it something like clock.py) (press Ctrl and the 'c' key at the same time to terminate the program):

from time import time, ctime

prev_time = ""

while True:

 the_time = ctime(time())

 if prev_time != the_time:

 print("The time is:", ctime(time()))

 prev_time = the_time

http://docs.python.org/library/.

Non-Programmer's Tutorial for Python 3/Print version 65

With some output being:

The time is: Sun Aug 20 13:40:04 2000

The time is: Sun Aug 20 13:40:05 2000

The time is: Sun Aug 20 13:40:06 2000

The time is: Sun Aug 20 13:40:07 2000

Traceback (innermost last):

 File "clock.py", line 5, in ?

 the_time = ctime(time())

KeyboardInterrupt

The output is infinite of course so I canceled it (or the output at least continues until Ctrl+C is pressed). The program
just does a infinite loop (True is always true, so while True: goes forever) and each time checks to see if the
time has changed and prints it if it has. Notice how multiple names after the import statement are used in the line
from time import time, ctime.
The Python Library contains many useful functions. These functions give your programs more abilities and many of
them can simplify programming in Python.

Exercises
Rewrite the high_low.py program from section Decisions to use an random integer between 0 and 99 instead of
the hard-coded 78. Use the Python documentation to find an appropriate module and function to do this.

Solution
Rewrite the high_low.py program from section Decisions to use an random integer between 0 and 99 instead
of the hard-coded 78. Use the Python documentation to find an appropriate module and function to do this.

from random import randint

number = randint(0, 99)

guess = -1

while guess != number:

 guess = int(input ("Guess a number: "))

 if guess > number:

 print("Too high")

 elif guess < number:

 print("Too low")

print("Just right")

http://en.wikibooks.org/w/index.php?title=../Decisions%23Examples
http://en.wikibooks.org/w/index.php?title=../Decisions%23Examples

Non-Programmer's Tutorial for Python 3/Print version 66

15. More on Lists
We have already seen lists and how they can be used. Now that you have some more background I will go into more
detail about lists. First we will look at more ways to get at the elements in a list and then we will talk about copying
them.
Here are some examples of using indexing to access a single element of a list:

>>> some_numbers = ['zero', 'one', 'two', 'three', 'four', 'five']

>>> some_numbers[0]

'zero'

>>> some_numbers[4]

'four'

>>> some_numbers[5]

'five'

All those examples should look familiar to you. If you want the first item in the list just look at index 0. The second
item is index 1 and so on through the list. However what if you want the last item in the list? One way could be to
use the len() function like some_numbers[len(some_numbers) - 1]. This way works since the
len() function always returns the last index plus one. The second from the last would then be
some_numbers[len(some_numbers) - 2]. There is an easier way to do this. In Python the last item is
always index -1. The second to the last is index -2 and so on. Here are some more examples:

>>> some_numbers[len(some_numbers) - 1]

'five'

>>> some_numbers[len(some_numbers) - 2]

'four'

>>> some_numbers[-1]

'five'

>>> some_numbers[-2]

'four'

>>> some_numbers[-6]

'zero'

Thus any item in the list can be indexed in two ways: from the front and from the back.
Another useful way to get into parts of lists is using slicing. Here is another example to give you an idea what they
can be used for:

>>> things = [0, 'Fred', 2, 'S.P.A.M.', 'Stocking', 42, "Jack", "Jill"]

>>> things[0]

0

>>> things[7]

'Jill'

>>> things[0:8]

[0, 'Fred', 2, 'S.P.A.M.', 'Stocking', 42, 'Jack', 'Jill']

>>> things[2:4]

[2, 'S.P.A.M.']

>>> things[4:7]

['Stocking', 42, 'Jack']

>>> things[1:5]

Non-Programmer's Tutorial for Python 3/Print version 67

['Fred', 2, 'S.P.A.M.', 'Stocking']

Slicing is used to return part of a list. The slicing operator is in the form
things[first_index:last_index]. Slicing cuts the list before the first_index and before the
last_index and returns the parts in between. You can use both types of indexing:

>>> things[-4:-2]

['Stocking', 42]

>>> things[-4]

'Stocking'

>>> things[-4:6]

['Stocking', 42]

Another trick with slicing is the unspecified index. If the first index is not specified the beginning of the list is
assumed. If the last index is not specified the whole rest of the list is assumed. Here are some examples:

>>> things[:2]

[0, 'Fred']

>>> things[-2:]

['Jack', 'Jill']

>>> things[:3]

[0, 'Fred', 2]

>>> things[:-5]

[0, 'Fred', 2]

Here is a (HTML inspired) program example (copy and paste in the poem definition if you want):

poem = ["", "Jack", "and", "Jill", "", "went", "up", "the",

 "hill", "to", "", "fetch", "a", "pail", "of", "",

 "water.", "Jack", "fell", "", "down", "and", "broke",

 "", "his", "crown", "and", "", "Jill", "came",

 "", "tumbling", "after"]

def get_bolds(text):

 true = 1

 false = 0

 ## is_bold tells whether or not we are currently looking at

 ## a bold section of text.

 is_bold = false

 ## start_block is the index of the start of either an unbolded

 ## segment of text or a bolded segment.

 start_block = 0

 for index in range(len(text)):

 ## Handle a starting of bold text

 if text[index] == "":

 if is_bold:

 print("Error: Extra Bold")

 ## print "Not Bold:", text[start_block:index]

 is_bold = true

 start_block = index + 1

Non-Programmer's Tutorial for Python 3/Print version 68

 ## Handle end of bold text

 ## Remember that the last number in a slice is the index

 ## after the last index used.

 if text[index] == "":

 if not is_bold:

 print("Error: Extra Close Bold")

 print("Bold [", start_block, ":", index, "]",

text[start_block:index])

 is_bold = false

 start_block = index + 1

get_bolds(poem)

with the output being:

Bold [1 : 4] ['Jack', 'and', 'Jill']

Bold [11 : 15] ['fetch', 'a', 'pail', 'of']

Bold [20 : 23] ['down', 'and', 'broke']

Bold [28 : 30] ['Jill', 'came']

The get_bold() function takes in a list that is broken into words and tokens. The tokens that it looks for are
 which starts the bold text and which ends bold text. The function get_bold() goes through and
searches for the start and end tokens.
The next feature of lists is copying them. If you try something simple like:

>>> a = [1, 2, 3]

>>> b = a

>>> print(b)

[1, 2, 3]

>>> b[1] = 10

>>> print(b)

[1, 10, 3]

>>> print(a)

[1, 10, 3]

This probably looks surprising since a modification to b resulted in a being changed as well. What happened is
that the statement b = a makes b a reference to a. This means that b can be thought of as another name for a.
Hence any modification to b changes a as well. However some assignments don't create two names for one list:

>>> a = [1, 2, 3]

>>> b = a * 2

>>> print(a)

[1, 2, 3]

>>> print(b)

[1, 2, 3, 1, 2, 3]

>>> a[1] = 10

>>> print(a)

[1, 10, 3]

>>> print(b)

[1, 2, 3, 1, 2, 3]

Non-Programmer's Tutorial for Python 3/Print version 69

In this case b is not a reference to a since the expression a * 2 creates a new list. Then the statement b = a *
2 gives b a reference to a * 2 rather than a reference to a. All assignment operations create a reference. When
you pass a list as an argument to a function you create a reference as well. Most of the time you don't have to worry
about creating references rather than copies. However when you need to make modifications to one list without
changing another name of the list you have to make sure that you have actually created a copy.
There are several ways to make a copy of a list. The simplest that works most of the time is the slice operator since it
always makes a new list even if it is a slice of a whole list:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> b[1] = 10

>>> print(a)

[1, 2, 3]

>>> print(b)

[1, 10, 3]

Taking the slice [:] creates a new copy of the list. However it only copies the outer list. Any sublist inside is still a
references to the sublist in the original list. Therefore, when the list contains lists, the inner lists have to be copied as
well. You could do that manually but Python already contains a module to do it. You use the deepcopy function
of the copy module:

>>> import copy

>>> a = 1, 2, 3], [4, 5, 6

>>> b = a[:]

>>> c = copy.deepcopy(a)

>>> b[0][1] = 10

>>> c[1][1] = 12

>>> print(a)

1, 10, 3], [4, 5, 6

>>> print(b)

1, 10, 3], [4, 5, 6

>>> print(c)

1, 2, 3], [4, 12, 6

First of all notice that a is a list of lists. Then notice that when b[0][1] = 10 is run both a and b are changed,
but c is not. This happens because the inner arrays are still references when the slice operator is used. However with
deepcopy c was fully copied.
So, should I worry about references every time I use a function or =? The good news is that you only have to worry
about references when using dictionaries and lists. Numbers and strings create references when assigned but every
operation on numbers and strings that modifies them creates a new copy so you can never modify them
unexpectedly. You do have to think about references when you are modifying a list or a dictionary.
By now you are probably wondering why are references used at all? The basic reason is speed. It is much faster to
make a reference to a thousand element list than to copy all the elements. The other reason is that it allows you to
have a function to modify the inputed list or dictionary. Just remember about references if you ever have some weird
problem with data being changed when it shouldn't be.

http://en.wikibooks.org/w/index.php?title=1%2C_2%2C_3%5D%2C_%5B4%2C_5%2C_6
http://en.wikibooks.org/w/index.php?title=1%2C_10%2C_3%5D%2C_%5B4%2C_5%2C_6
http://en.wikibooks.org/w/index.php?title=1%2C_10%2C_3%5D%2C_%5B4%2C_5%2C_6
http://en.wikibooks.org/w/index.php?title=1%2C_2%2C_3%5D%2C_%5B4%2C_12%2C_6

Non-Programmer's Tutorial for Python 3/Print version 70

16. Revenge of the Strings
And now presenting a cool trick that can be done with strings:

def shout(string):

 for character in string:

 print("Gimme a " + character)

 print("'" + character + "'")

shout("Lose")

def middle(string):

 print("The middle character is:", string[len(string) // 2])

middle("abcdefg")

middle("The Python Programming Language")

middle("Atlanta")

And the output is:

Gimme a L

'L'

Gimme a o

'o'

Gimme a s

's'

Gimme a e

'e'

The middle character is: d

The middle character is: r

The middle character is: a

What these programs demonstrate is that strings are similar to lists in several ways. The shout() function shows
that for loops can be used with strings just as they can be used with lists. The middle procedure shows that that
strings can also use the len() function and array indexes and slices. Most list features work on strings as well.
The next feature demonstrates some string specific features:

def to_upper(string):

 ## Converts a string to upper case

 upper_case = ""

 for character in string:

 if 'a' <= character <= 'z':

 location = ord(character) - ord('a')

 new_ascii = location + ord('A')

 character = chr(new_ascii)

 upper_case = upper_case + character

 return upper_case

print(to_upper("This is Text"))

Non-Programmer's Tutorial for Python 3/Print version 71

with the output being:

THIS IS TEXT

This works because the computer represents the characters of a string as numbers from 0 to 1,114,111. For example
'A' is 65, 'B' is 66 and א is 1488. The values are the unicode value. Python has a function called ord() (short for
ordinal) that returns a character as a number. There is also a corresponding function called chr() that converts a
number into a character. With this in mind the program should start to be clear. The first detail is the line: if 'a'
<= character <= 'z': which checks to see if a letter is lower case. If it is then the next lines are used. First it
is converted into a location so that a = 0, b = 1, c = 2 and so on with the line: location = ord(character)
- ord('a'). Next the new value is found with new_ascii = location + ord('A'). This value is
converted back to a character that is now upper case. Note that if you really need the upper case of a letter, you
should use u=var.upper() which will work with other languages as well.
Now for some interactive typing exercise:

>>> # Integer to String

>>> 2

2

>>> repr(2)

'2'

>>> -123

-123

>>> repr(-123)

'-123'

>>> # String to Integer

>>> "23"

'23'

>>> int("23")

23

>>> "23" * 2

'2323'

>>> int("23") * 2

46

>>> # Float to String

>>> 1.23

1.23

>>> repr(1.23)

'1.23'

>>> # Float to Integer

>>> 1.23

1.23

>>> int(1.23)

1

>>> int(-1.23)

-1

>>> # String to Float

>>> float("1.23")

1.23

>>> "1.23"

http://en.wikipedia.org/wiki/en:unicode

Non-Programmer's Tutorial for Python 3/Print version 72

'1.23'

>>> float("123")

123.0

If you haven't guessed already the function repr() can convert an integer to a string and the function int() can
convert a string to an integer. The function float() can convert a string to a float. The repr() function returns
a printable representation of something. Here are some examples of this:

>>> repr(1)

'1'

>>> repr(234.14)

'234.14'

>>> repr([4, 42, 10])

'[4, 42, 10]'

The int() function tries to convert a string (or a float) into an integer. There is also a similar function called
float() that will convert a integer or a string into a float. Another function that Python has is the eval()
function. The eval() function takes a string and returns data of the type that python thinks it found. For example:

>>> v = eval('123')

>>> print(v, type(v))

123 <type 'int'>

>>> v = eval('645.123')

>>> print(v, type(v))

645.123 <type 'float'>

>>> v = eval('[1, 2, 3]')

>>> print(v, type(v))

[1, 2, 3] <type 'list'>

If you use the eval() function you should check that it returns the type that you expect.
One useful string function is the split() method. Here's an example:

>>> "This is a bunch of words".split()

['This', 'is', 'a', 'bunch', 'of', 'words']

>>> text = "First batch, second batch, third, fourth"

>>> text.split(",")

['First batch', ' second batch', ' third', ' fourth']

Notice how split() converts a string into a list of strings. The string is split by whitespace by default or by the
optional argument (in this case a comma). You can also add another argument that tells split() how many times
the separator will be used to split the text. For example:

>>> list = text.split(",")

>>> len(list)

4

>>> list[-1]

' fourth'

>>> list = text.split(",", 2)

>>> len(list)

3

>>> list[-1]

Non-Programmer's Tutorial for Python 3/Print version 73

' third, fourth'

Slicing strings (and lists)
Strings can be cut into pieces — in the same way as it was shown for lists in the previous chapter — by using the
slicing "operator" []. The slicing operator works in the same way as before: text[first_index:last_index] (in very rare
cases there can be another colon and a third argument, as in the example shown below).
In order not to get confused by the index numbers, it is easiest to see them as clipping places, possibilities to cut a
string into parts. Here is an example, which shows the clipping places (in yellow) and their index numbers (red and
blue) for a simple text string:

0 1 2 ... -2 -1

↓ ↓ ↓ ↓ ↓ ↓ ↓

text = " S T R I N G "

↑ ↑

[: :]

Note that the red indexes are counted from the beginning of the string and the blue ones from the end of the string
backwards. (Note that there is no blue -0, which could seem to be logical at the end of the string. Because -0 == 0,
-0 means "beginning of the string" as well.) Now we are ready to use the indexes for slicing operations:

text[1:4] → "TRI"

text[:5] → "STRIN"

text[:-1] → "STRIN"

text[-4:] → "RING"

text[2] → "R"

text[:] → "STRING"

text[::-1] → "GNIRTS"

text[1:4] gives us all of the text string between clipping places 1 and 4, "TRI". If you omit one of the
[first_index:last_index] arguments, you get the beginning or end of the string as default: text[:5] gives
"STRIN". For both first_index and last_index we can use both the red and the blue numbering schema:
text[:-1] gives the same as text[:5], because the index -1 is at the same place as 5 in this case. If we do not
use an argument containing a colon, the number is treated in a different way: text[2] gives us one character
following the second clipping point, "R". The special slicing operation text[:] means "from the beginning to the
end" and produces a copy of the entire string (or list, as shown in the previous chapter).
Last but not least, the slicing operation can have a second colon and a third argument, which is interpreted as the
"step size": text[::-1] is text from beginning to the end, with a step size of -1. -1 means "every character,
but in the other direction". "STRING" backwards is "GNIRTS" (test a step length of 2, if you have not got the point
here).
All these slicing operations work with lists as well. In that sense strings are just a special case of lists, where the list
elements are single characters. Just remember the concept of clipping places, and the indexes for slicing things will
get a lot less confusing.

Non-Programmer's Tutorial for Python 3/Print version 74

Examples
This program requires an excellent understanding of decimal numbers.

def to_string(in_int):

 """Converts an integer to a string"""

 out_str = ""

 prefix = ""

 if in_int < 0:

 prefix = "-"

 in_int = -in_int

 while in_int // 10 != 0:

 out_str = str(in_int % 10) + out_str

 in_int = in_int // 10

 out_str = str(in_int % 10) + out_str

 return prefix + out_str

def to_int(in_str):

 """Converts a string to an integer"""

 out_num = 0

 if in_str[0] == "-":

 multiplier = -1

 in_str = in_str[1:]

 else:

 multiplier = 1

 for c in in_str:

 out_num = out_num * 10 + int(c)

 return out_num * multiplier

print(to_string(2))

print(to_string(23445))

print(to_string(-23445))

print(to_int("14234"))

print(to_int("12345"))

print(to_int("-3512"))

The output is:

2

23445

-23445

14234

12345

-3512

Non-Programmer's Tutorial for Python 3/Print version 75

17. File IO

File I/O
Here is a simple example of file I/O (input/output):

Write a file

with open("test.txt", "wt") as out_file:

 out_file.write("This Text is going to out file\nLook at it and

see!")

Read a file

with open("test.txt", "rt") as in_file:

 text = in_file.read()

print(text)

The output and the contents of the file test.txt are:

This Text is going to out file

Look at it and see!

Notice that it wrote a file called test.txt in the directory that you ran the program from. The \n in the string
tells Python to put a newline where it is.
A overview of file I/O is:
• Get a file object with the open function
•• Read or write to the file object (depending on how it was opened)
• If you did not use with to open the file, you'd have to close it manually
The first step is to get a file object. The way to do this is to use the open function. The format is file_object
= open(filename, mode) where file_object is the variable to put the file object, filename is a
string with the filename, and mode is "rt" to read a file as text or "wt" to write a file as text (and a few others
we will skip here). Next the file objects functions can be called. The two most common functions are read and
write. The write function adds a string to the end of the file. The read function reads the next thing in the file
and returns it as a string. If no argument is given it will return the whole file (as done in the example).
Now here is a new version of the phone numbers program that we made earlier:

def print_numbers(numbers):

 print("Telephone Numbers:")

 for k, v in numbers.items():

 print("Name:", k, "\tNumber:", v)

 print()

def add_number(numbers, name, number):

 numbers[name] = number

def lookup_number(numbers, name):

 if name in numbers:

 return "The number is " + numbers[name]

Non-Programmer's Tutorial for Python 3/Print version 76

 else:

 return name + " was not found"

def remove_number(numbers, name):

 if name in numbers:

 del numbers[name]

 else:

 print(name," was not found")

def load_numbers(numbers, filename):

 in_file = open(filename, "rt")

 while True:

 in_line = in_file.readline()

 if not in_line:

 break

 in_line = in_line[:-1]

 name, number = in_line.split(",")

 numbers[name] = number

 in_file.close()

def save_numbers(numbers, filename):

 out_file = open(filename, "wt")

 for k, v in numbers.items():

 out_file.write(k + "," + v + "\n")

 out_file.close()

def print_menu():

 print('1. Print Phone Numbers')

 print('2. Add a Phone Number')

 print('3. Remove a Phone Number')

 print('4. Lookup a Phone Number')

 print('5. Load numbers')

 print('6. Save numbers')

 print('7. Quit')

 print()

phone_list = {}

menu_choice = 0

print_menu()

while True:

 menu_choice = int(input("Type in a number (1-7): "))

 if menu_choice == 1:

 print_numbers(phone_list)

 elif menu_choice == 2:

 print("Add Name and Number")

 name = input("Name: ")

 phone = input("Number: ")

Non-Programmer's Tutorial for Python 3/Print version 77

 add_number(phone_list, name, phone)

 elif menu_choice == 3:

 print("Remove Name and Number")

 name = input("Name: ")

 remove_number(phone_list, name)

 elif menu_choice == 4:

 print("Lookup Number")

 name = input("Name: ")

 print(lookup_number(phone_list, name))

 elif menu_choice == 5:

 filename = input("Filename to load: ")

 load_numbers(phone_list, filename)

 elif menu_choice == 6:

 filename = input("Filename to save: ")

 save_numbers(phone_list, filename)

 elif menu_choice == 7:

 break

 else:

 print_menu()

print("Goodbye")

Notice that it now includes saving and loading files. Here is some output of my running it twice:

1. Print Phone Numbers

2. Add a Phone Number

3. Remove a Phone Number

4. Lookup a Phone Number

5. Load numbers

6. Save numbers

7. Quit

Type in a number (1-7): 2

Add Name and Number

Name: Jill

Number: 1234

Type in a number (1-7): 2

Add Name and Number

Name: Fred

Number: 4321

Type in a number (1-7): 1

Telephone Numbers:

Name: Jill Number: 1234

Name: Fred Number: 4321

Type in a number (1-7): 6

Filename to save: numbers.txt

Type in a number (1-7): 7

Non-Programmer's Tutorial for Python 3/Print version 78

Goodbye

1. Print Phone Numbers

2. Add a Phone Number

3. Remove a Phone Number

4. Lookup a Phone Number

5. Load numbers

6. Save numbers

7. Quit

Type in a number (1-7): 5

Filename to load: numbers.txt

Type in a number (1-7): 1

Telephone Numbers:

Name: Jill Number: 1234

Name: Fred Number: 4321

Type in a number (1-7): 7

Goodbye

The new portions of this program are:

def load_numbers(numbers, filename):

 in_file = open(filename, "rt")

 while True:

 in_line = in_file.readline()

 if not in_line:

 break

 in_line = in_line[:-1]

 name, number = in_line.split(",")

 numbers[name] = number

 in_file.close()

def save_numbers(numbers, filename):

 out_file = open(filename, "wt")

 for k, v in numbers.values():

 out_file.write(k + "," + v + "\n")

 out_file.close()

First we will look at the save portion of the program. First it creates a file object with the command
open(filename, "wt"). Next it goes through and creates a line for each of the phone numbers with the
command out_file.write(x + "," + numbers[x] + "\n"). This writes out a line that contains the
name, a comma, the number and follows it by a newline.
The loading portion is a little more complicated. It starts by getting a file object. Then it uses a while True:
loop to keep looping until a break statement is encountered. Next it gets a line with the line in_line =
in_file.readline(). The readline function will return a empty string when the end of the file is reached.
The if statement checks for this and breaks out of the while loop when that happens. Of course if the
readline function did not return the newline at the end of the line there would be no way to tell if an empty string
was an empty line or the end of the file so the newline is left in what readline returns. Hence we have to get rid

Non-Programmer's Tutorial for Python 3/Print version 79

of the newline. The line in_line = in_line[:-1] does this for us by dropping the last character. Next the
line name, number = in_line.split(",") splits the line at the comma into a name and a number. This is
then added to the numbers dictionary.

Advanced use of .txt files
You might be saying to yourself, "Well I know how to read and write to a textfile, but what if I want to print the file
without opening out another program?"
There are a few different ways to accomplish this. The easiest way does open another program, but everything is
taken care of in the Python code, and doesn't require the user to specify a file to be printed. This method involves
invoking the subprocess of another program.
Remember the file we wrote output to in the above program? Let's use that file. Keep in mind, in order to prevent
some errors, this program uses concepts from the Next chapter. Please feel free to revisit this example after the next
chapter.

import subprocess

def main():

 try:

 print("This small program invokes the print function in the

Notepad application")

 #Lets print the file we created in the program above

 subprocess.call(['notepad','/p','numbers.txt'])

 except WindowsError:

 print("The called subprocess does not exist, or cannot be

called.")

main()

The subprocess.call takes three arguments. The first argument in the context of this example, should be the
name of the program which you would like to invoke the printing subprocess from. The second argument should be
the specific subprocess within that program. For simplicity, just understand that in this program, '/p' is the
subprocess used to access your printer through the specified application. The last argument should be the name of the
file you want to send to the printing subprocess. In this case, it is the same file used earlier in this chapter.

Exercises
Now modify the grades program from section Dictionaries so that is uses file I/O to keep a record of the students.

Solution
Now modify the grades program from section Dictionaries so that is uses file I/O to keep a record of the students.

assignments = ['hw ch 1', 'hw ch 2', 'quiz ', 'hw ch 3', 'test']

students = { }

def load_grades(gradesfile):

 inputfile = open(gradesfile, "r")

 grades = []

 while True:

 student_and_grade = inputfile.readline()

 student_and_grade = student_and_grade[:-1]

http://en.wikibooks.org/w/index.php?title=../Dictionaries
http://en.wikibooks.org/w/index.php?title=../Dictionaries

Non-Programmer's Tutorial for Python 3/Print version 80

 if not student_and_grade:

 break

 else:

 studentname, studentgrades = student_and_grade.split(",")

 studentgrades = studentgrades.split(" ")

 students[studentname] = studentgrades

 inputfile.close()

 print("Grades loaded.")

def save_grades(gradesfile):

 outputfile = open(gradesfile, "w")

 for k, v in students.values():

 outputfile.write(k + ",")

 for x in v:

 outputfile.write(x + " ")

 outputfile.write("\n")

 outputfile.close()

 print("Grades saved.")

def print_menu():

 print("1. Add student")

 print("2. Remove student")

 print("3. Load grades")

 print("4. Record grade")

 print("5. Print grades")

 print("6. Save grades")

 print("7. Print Menu")

 print("9. Quit")

def print_all_grades():

 if students:

 keys = sorted(students.keys())

 print('\t', end=' ')

 for x in assignments:

 print(x, '\t', end=' ')

 print()

 for x in keys:

 print(x, '\t', end=' ')

 grades = students[x]

 print_grades(grades)

 else:

 print("There are no grades to print.")

def print_grades(grades):

 for x in grades:

 print(x, '\t', end=' ')

 print()

Non-Programmer's Tutorial for Python 3/Print version 81

print_menu()

menu_choice = 0

while menu_choice != 9:

 print()

 menu_choice = int(input("Menu Choice: "))

 if menu_choice == 1:

 name = input("Student to add: ")

 students[name] = [0] * len(assignments)

 elif menu_choice == 2:

 name = input("Student to remove: ")

 if name in students:

 del students[name]

 else:

 print("Student:", name, "not found")

 elif menu_choice == 3:

 gradesfile = input("Load grades from which file? ")

 load_grades(gradesfile)

 elif menu_choice == 4:

 print("Record Grade")

 name = input("Student: ")

 if name in students:

 grades = students[name]

 print("Type in the number of the grade to record")

 print("Type a 0 (zero) to exit")

 for i,x in enumerate(assignments):

 print(i + 1, x, '\t', end=' ')

 print()

 print_grades(grades)

 which = 1234

 while which != -1:

 which = int(input("Change which Grade: "))

 which -= 1

 if 0 <= which < len(grades):

 grade = input("Grade: ") # Change from

float(input()) to input() to avoid an error when saving

 grades[which] = grade

 elif which != -1:

 print("Invalid Grade Number")

 else:

 print("Student not found")

 elif menu_choice == 5:

 print_all_grades()

 elif menu_choice == 6:

 gradesfile = input("Save grades to which file? ")

 save_grades(gradesfile)

 elif menu_choice != 9:

Non-Programmer's Tutorial for Python 3/Print version 82

 print_menu()

18. Dealing with the imperfect

closing files with with
We use the "with" statement to open and close files.[1][2]

with open("in_test.txt", "rt") as in_file:

 with open("out_test.txt", "wt") as out_file:

 text = in_file.read()

 data = parse(text)

 results = encode(data)

 out_file.write(results)

 print("All done.")

If some sort of error happens anywhere in this code (one of the files is inaccessible, the parse() function chokes on
corrupt data, etc.) the "with" statements guarantee that all the files will eventually be properly closed. Closing a file
just means that the file is "cleaned up" and "released" by our program so that it can be used in another program.

catching errors with try
So you now have the perfect program, it runs flawlessly, except for one detail, it will crash on invalid user input.
Have no fear, for Python has a special control structure for you. It's called try and it tries to do something. Here is
an example of a program with a problem:

print("Type Control C or -1 to exit")

number = 1

while number != -1:

 number = int(input("Enter a number: "))

 print("You entered:", number)

Notice how when you enter @#& it outputs something like:

Traceback (most recent call last):

 File "try_less.py", line 4, in <module>

 number = int(input("Enter a number: "))

ValueError: invalid literal for int() with base 10: '\\@#&'

As you can see the int() function is unhappy with the number @#& (as well it should be). The last line shows
what the problem is; Python found a ValueError. How can our program deal with this? What we do is first: put
the place where errors may occur in a try block, and second: tell Python how we want ValueErrors handled.
The following program does this:

print("Type Control C or -1 to exit")

number = 1

while number != -1:

 try:

 number = int(input("Enter a number: "))

Non-Programmer's Tutorial for Python 3/Print version 83

 print("You entered:", number)

 except ValueError:

 print("That was not a number.")

Now when we run the new program and give it @#& it tells us "That was not a number." and continues with what it
was doing before.
When your program keeps having some error that you know how to handle, put code in a try block, and put the
way to handle the error in the except block.

Exercises
Update at least the phone numbers program (in section Dictionaries) so it doesn't crash if a user doesn't enter any
data at the menu.

19. The End
So here we are at the end, or maybe the beginning. This tutorial is on Wikibooks, so feel free to make improvements
to it. If you want to learn more about Python, The Python Tutorial (http:/ / docs. python. org/ 3/ tutorial/ index. html)
by Guido van Rossum (http:/ / www. python. org/ ~guido/) has more topics that you can learn about. If you have
been following this tutorial, you should be able to understand a fair amount of it. The Python Programming wikibook
can be worth looking at, too. Here are few other books which cover Python 3:
• A Byte of Python by Swaroop C H (http:/ / www. swaroopch. com/ notes/ Python)
• Hands-on Python Tutorial by Dr. Andrew N. Harrington (http:/ / anh. cs. luc. edu/ python/ hands-on/ 3. 1/

handsonHtml/ index. html)
• Subject:Python programming language lists other Wikibooks related to Python.
Hopefully this book covers everything you have needed to get started programming. Thanks to everyone who has
sent me emails about it. I enjoyed reading them, even when I have not always been the best replier.
Happy programming, may it change your life and the world.

20. FAQ
How do I make a GUI in Python?

You can use either TKinter at http:/ / www. python. org/ topics/ tkinter/ or PyQT4 at http:/ / www.
riverbankcomputing. co. uk/ or PyGobject at http:/ / live. gnome. org/ PyGObject For really simple graphics,
you can use the turtle graphics mode import turtle

How do I make a game in Python?
The best method is probably to use PyGame at http:/ / pygame. org/

How do I make an executable from a Python program?
Short answer: Python is an interepreted language so that is impossible. Long answer is that something similar
to an executable can be created by taking the Python interpreter and the file and joining them together and
distributing that. For more on that problem see http:/ / www. python. org/ doc/ faq/ programming/
#how-can-i-create-a-stand-alone-binary-from-a-python-script

(IFAQ) Why do you use first person in this tutorial?
Once upon a time in a different millenia, (1999 to be exact), an earlier version was written entirely by Josh
Cogliati, and it was up on his webpage http:/ / www. honors. montana. edu/ ~jjc/ easytut and it was good. Then
the server rupert, like all good things than have a beginning came to an end, and Josh moved it to Wikibooks,

http://en.wikibooks.org/w/index.php?title=../Dictionaries
http://docs.python.org/3/tutorial/index.html
http://www.python.org/~guido/
http://en.wikibooks.org/w/index.php?title=Python_Programming
http://www.swaroopch.com/notes/Python
http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/index.html
http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/index.html
http://en.wikibooks.org/w/index.php?title=Subject:Python_programming_language
http://www.python.org/topics/tkinter/
http://www.riverbankcomputing.co.uk/
http://www.riverbankcomputing.co.uk/
http://live.gnome.org/PyGObject
http://pygame.org/
http://www.python.org/doc/faq/programming/#how-can-i-create-a-stand-alone-binary-from-a-python-script
http://www.python.org/doc/faq/programming/#how-can-i-create-a-stand-alone-binary-from-a-python-script
http://www.honors.montana.edu/~jjc/easytut

Non-Programmer's Tutorial for Python 3/Print version 84

but the first person writing stuck. If someone really wants to change it, I will not revert it, but I don't see much
point.

My question is not answered.
Ask on the discussion page or add it to this FAQ, or email one of the Authors.

For other FAQs, you may want to see the Python 2.6 version of this page Non-Programmer's Tutorial for Python
2.6/FAQ, or the Python FAQ (http:/ / www. python. org/ doc/ faq/).

References
[1] "The 'with' statement" (http:/ / docs. python. org/ 3. 4/ reference/ compound_stmts. html#the-with-statement)
[2] 'The Python "with" Statement by Example' (http:/ / preshing. com/ 20110920/ the-python-with-statement-by-example/)

http://en.wikibooks.org/w/index.php?title=../Authors
http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_2.6/FAQ
http://en.wikibooks.org/w/index.php?title=Non-Programmer%27s_Tutorial_for_Python_2.6/FAQ
http://www.python.org/doc/faq/
http://docs.python.org/3.4/reference/compound_stmts.html#the-with-statement
http://preshing.com/20110920/the-python-with-statement-by-example/

Article Sources and Contributors 85

Article Sources and Contributors
Non-Programmer's Tutorial for Python 3/Print version Source: http://en.wikibooks.org/w/index.php?oldid=2586733 Contributors: Adrignola, Baijum81, Glaisher, Yug, 3 anonymous edits

Image Sources, Licenses and Contributors
Image:Python3-powered hello-world.svg Source: http://en.wikibooks.org/w/index.php?title=File:Python3-powered_hello-world.svg License: Trademarked Contributors: Benjamin Hell
(en:User:Siebengang). Original uploader was Siebengang at en.wikibooks

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

	Non-Programmer's Tutorial for Python 3/Print version
	1. Front matter
	Other resources

	2. Intro
	First things first
	Installing Python
	Linux, BSD, and Unix users
	Mac users
	Windows users
	Configuring your PATH environment variable

	Interactive Mode
	Creating and Running Programs
	Program file names

	Using Python from the command line
	Running Python Programs in *nix

	Where to get help
	Python documentation
	Python user community

	3. Hello, World
	What you should know
	Printing
	Terminology

	Expressions
	Talking to humans (and other intelligent beings)
	Examples
	Exercises
	Footnotes

	4. Who Goes There?
	Input and Variables
	Assignment
	Examples
	Exercises

	5. Count to 10
	While loops
	Infinite loops or Never Ending Loop
	Examples
	Fibonacci sequence
	Enter password

	Exercises

	6. Decisions
	If statement
	Examples
	Exercises

	7. Debugging
	What is debugging?
	What should the program do?
	What does the program do?
	How do I fix my program?

	8. Defining Functions
	Creating Functions
	Variables in functions
	Examples
	Exercises

	9. Advanced Functions Example
	Recursion
	Examples

	10. Lists
	Variables with more than one value
	More features of lists
	Examples
	Exercises

	11. For Loops
	12. Boolean Expressions
	A note on Boolean Operators
	Examples
	Exercises

	13. Dictionaries
	14. Using Modules
	Exercises

	15. More on Lists
	16. Revenge of the Strings
	Slicing strings (and lists)
	Examples

	17. File IO
	File I/O
	Advanced use of .txt files
	Exercises

	18. Dealing with the imperfect
	closing files with with
	catching errors with try
	Exercises

	19. The End
	20. FAQ
	License

