
IISSSSUUEE 2299 -- DDEECC 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

TTeemmppeerraattuurree SSeennssoorrss

EExxtteerrnnaall SSttoorraaggee

PPrroojjeecctt CCuurraaccaaoo

BBAASSIICC RRoobboottiiccss

TTrraaffffiicc LLiigghhtt

PPyytthhoonn GGUUII

AA++ RReevviieeww

UUssiinngg GGiitt

OOppeennCCVV

SSccrraattcchh
SSppaacceeccrraafftt

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

http://www.themagpi.com
http://www.themagpi.com

Ash Stone - Chief Editor / Administration

Ian McAlpine - Layout / Testing / Proof Reading

W.H. Bell - Issue Editor / Administration / Layout

Bryan Butler - Page Design / Graphics

Matt Judge - Website

Nick Hitch - Administration

Colin Deady - Layout / Proof Reading

Aaron Shaw - Administration

The MagPi Team

Dougie Lawson - Testing

Nick Liversidge - Layout / Proof Reading

Martin Wolstencroft - Proof Reading

David Bannon - Layout / Proof Reading

Shelton Caruthers - Proof Reading

Rita Smith - Proof Reading

Claire Price - Proof Reading

2

29

Welcome to Issue 29 of the MagPi, packed with the usual mixture of hardware projects and

programming articles, providing lots of avenues for invention during December.

With the Christmas holidays drawing near, what could be better than some new Raspberry Pi hardware.

For al l those looking forward to bui lding a high alti tude capsule or autonomous submarine, the Model A+

provides many great features for a very low power budget. Dougie Lawson presents a whistle-stop tour

of the A+, comparing it to other Raspberry Pi Models.

On the subject of robots, computer vision can provide an image cognition solution within many

autonomous robotics projects. Derek Campbell sketches out more features of OpenCV (open source

computer vision) image recognition software.

The Raspberry Pi is ideal ly suited as the hub of a sensor array or control unit, since it can be used to

propagate information via a web server or other remote protocol. In this Issue, John Shovic's presents

his final article in the Project Curacao remote monitoring series, David Bannon demonstrates how to

bui ld and read a simple array of digital temperature sensors, and Brian Grawburg introduces his traffic

l ight extension board.

When developing software or projects, it is important to retain unique fi les that are part of the bui ld. In

this Issue, Alec Clews continues his series on software repositories and using Git, and Wil l iam Bell

discusses the basics of adding external storage to the Raspberry Pi.

Computer programming enables the Raspberry Pi to be used within many different applications. This

month, Jon Silvera discusses how to drive a robotic arm with FUZE BASIC, Wil l iam Bell presents a

simple space arcade game in Scratch and Paul Sutton

introduces Python graphical user interfaces (GUIs).

The MagPi wil l be taking a short break over Christmas

and the first Issue of 201 5 wil l be published at the start of

February.

Merry Christmas and best wishes for 201 5.
Chief Editor of The MagPi

3

4 TRAFFIC LIGHT
Simulating a bi-directional traffic l ight

8
Part 6: Upgrades on the Beach

PROJECT CURACAO

Introducing the latest Raspberry Pi hardware
1 4 NEW MODEL A+

1 8
Part 2: Computer Vision on the Raspberry Pi
INTRODUCING OPENCV

36
Version control basics using Git - Part 3

VERSION CONTROL

DIGITAL TEMPERATURE SENSOR22
Logging temperature with 1 -wire sensor

Part 5: Using FUZE BASIC to control a robot arm
26

FUZE BASIC

44
Creating a GUI with Python's Tkinter
PYTHON PIT: MAGIC 8 BALL

31
Part 1 : Fi le systems, partition tables and rsync

EXTERNAL STORAGE

40
Learning to land on Mars

SCRATCH PATCH: GOING BALLISTIC

43
Manchester, Lagos, Northern Ireland, Glasgow, Saarbrücken

THIS MONTH'S EVENTS

http://www.themagpi.com

Contents

http://www.themagpi.com

4

SKILL LEVEL : BEGINNER

Brian Grawburg

Guest Writer

Simulating a bi-directional
traffic light

The Imagination Station Science Museum in

North Carol ina (USA) offers several Raspberry

Pi and Python classes and camps. This article

is a shortened version of a project given to the

students after they've completed about 20 hours

a prel iminary exposure to the Pi and Python. A

previous project introduced the use of an 8 port

I /O expander (MCP23008) and provided

sufficient background in binary and

hexadecimal numbering to enable them to

complete this project on their own. New to this

project was the CD74AC02 Quadruple 2-input

NOR gate IC and the use of two MCP2301 7

chips (1 6 I/O ports each).

Overview of the Project

A typical traffic signal at a major intersection in

the U.S. has a red-yel low-green l ight and often a

left-turn signal, also with red-yel low-green

l ights/arrows. Although many intersections are

asymmetrical as regards turning lanes and

timing, for this project I l imited the number to

two symmetrical directions – North

(representing north-south) and East

(representing east-west) .

Like a real traffic signal, the Python code turns

on the red for one direction while the green and

then yel low are on for the opposite direction;

then both reds are on for a short time

simultaneously unti l the cycle starts over.

Most intersections with a separate left-turn lane

don't usual ly activate the left-turn l ights if there

are no cars in the lanes. For this project

momentary push-buttons simulate a car in the

lane to activate both left-turn lanes.

The MCP2301 7s could be fitted to a

breadboard and then wired back to the Pi's

GPIO pins with jumpers, however I decided to

use a pre-fabricated Protect Your Pi board from

MyPiShop.com to make the connections much

easier. In addition, the board can be reused for

a variety of projects.

5

The project uses 1 2 LEDs and 1 2 resistors; I

made PCBs for the students to use because I

felt i t was much easier to work with a PCB than

a breadboard. The CD74AC02 and the

pushbuttons, however, are on a breadboard.

About the CD7AC Chip

One of the more frustrating aspects of this

project was trying to incorporate the left-turn

option into the Python code. No doubt there

was a way to do it but I couldn't figure it out (I

saw one possible way, but it required a lot of

code). Here's where being part of a user group

can real ly make a difference. I 'm active in the

Triangle Embedded Devices group

(www.triembed.org) and posted a series of

emails to the group; got a great answer that I 'm

using here.

The “problem”: As the l ights were cycl ing

through I wanted to push a button to simulate a

car pul l ing into the left turn-only lane which then

activates something to tel l the program “there's

a car that wants to turn so when you're finished

with the normal cycle run the left turn cycle.”

Back in 201 0/201 1 I took a year-long course at

a local community col lege on programming

PLCs (Programmable Logic Control lers) . One of

the basic functions is latching an output,

meaning that when it is set high it would remain

high unti l specifical ly set low by the program.

That's what I was trying to do within the Python

code.

The CD74AC02 contains four independent 2-

input NOR gates as diagrammed below (NOR

is an abbreviation for NOT OR, two options in

logic construction). I needed to make a latching

Set-Reset fl ip flop: a logic circuit that has two

inputs and one output. Latch circuits can be

either active-high or active-low.

Active-high circuit: Both inputs are normally

tied to ground (LOW) by a pul l-down resistor

and the latch is triggered by a momentary HIGH

signal on either of the inputs.

Active-low circuit: Both inputs are normally

HIGH, and the latch is triggered by a

momentary LOW signal on either input.

In an active-high latch when the SET input goes

HIGH, the output also goes HIGH. When the set

input returns to LOW, however, the output

remains HIGH. The output of the active-high

latch stays HIGH unti l the RESET input goes

HIGH. Then, the output returns to LOW and wil l

www.triembed.org

6

go HIGH again only when the SET input is

triggered once more.

The latch remembers that the SET input has

been activated. I f the SET input goes HIGH for

even a moment, the output goes HIGH and

stays HIGH, even after the SET input returns to

LOW. This is what happens when one of the

pushbuttons is depressed. The output returns to

LOW only when the RESET input goes HIGH;

this is written into the Python code.

The project is an active-high circuit. This option

seems more intuitive to me.

The Protect Your Pi Board

This project requires a minimum of 1 6 ports; 1 4

outputs and 2 inputs. The board can be

constructed as a shield to attach directly to the

Pi (as shown below) or attached with an

external ribbon. I f space is a l imiting factor the

shield option is a good idea. However, I prefer to

attach the boards to the Pi using a ribbon cable

whi le I work on the code and component layout.

The CD74AC02 is powered by the Protect Your

Pi board (3.3 VDC). Ground from the LED board

and the breadboard is also connected to this

board.

The left MCP chip (banks A and B) takes care

of the outputs to the LEDs and the right chip

(bank A) takes care of the inputs from the two

pushbuttons and the RESET output from the

Python code to the CD74.

The Python code I suggested to the students

fol lowed the pattern they had already

encountered in previous classes. I t was

straighforward and easy to understand. A

future large-scale project wil l be to recreate a

small portion of the street that runs past the

Imagination Station Science Museum with

several intersections and a train crossing. The

ultimate goal being to synchronize the l ights for

morning traffic (into town) and evening traffic

(away from town).

The Code.

The fol lowing page shows a sample Python

script that can demonstrate the system. Much of

the script is about defining labels that refer to

the various ports or values we later poke into

those ports. Using labels (or constants,

variables) l ike this is always a good idea as it

makes the actual code much easier to read and

modify.

The ful l project manual, including the Python

code, can be downloaded from the Triangle

Embedded Devices Web page:

http://triembed.org/blog/?page_id=658.

Brian Grawburg is from the Imagination Station
Science & History Museum, Wilson, NC (USA)

http://triembed.org/blog/?page_id=658

7

#!/usr/bin/env python
import smbus
import time

bus = smbus.SMBus(1)

address1 = 0x21
address2 = 0x20
IODIRA = 0x00
IODIRB = 0x01
GPIOA = 0x12
GPIOB = 0x13
OLATA = 0x14
OLATB = 0x15
light_on = 5 # Straight lights
both_red = 1
left_on = 4 # Left lights

io_setting = [
[0,0,0], # Reset: all off, no delay
[0x30,0x24,light_on], # Straight East Green, North Red, L-turns Red
[0x28,0x24,light_on], # Straight East Amber, North Red
[0x24,0x24,both_red], # East & North Red, L-turns Red
[0x84,0x24,light_on], # North Green, East Red
[0x44,0x24,light_on], # North Amber, East Red
[0x24,0x09,left_on], # Both L-turns Green, Straights Red
[0x24,0x12,left_on] # Both L-turns Amber

]

def cycle(index):
bus.write_byte_data(address1,OLATA,io_setting[index][0])
bus.write_byte_data(address1,OLATB,io_setting[index][1])
time.sleep(io_setting[index][2])

bus.write_byte_data(address1,IODIRA,0x00)
bus.write_byte_data(address1,IODIRB,0x00)
bus.write_byte_data(address2,IODIRA,0x03)

cycle(0)

bus.write_byte_data(address2,OLATA,0x00)

try:
while True:

buttonPressed=bus.read_byte_data(address2,GPIOA)
if buttonPressed == 0:

cycle(1); cycle(2);
cycle(3); cycle(4);
cycle(5); cycle(3)

else:
cycle(6); cycle(7); cycle(3)
bus.write_byte_data(address2,OLATA,0x18)
bus.write_byte_data(address2,OLATA,0x00)

except KeyboardInterrupt:
cycle(0)
bus.write_byte_data(address2,OLATA,0x00)

Sample code to demonstrate the Traffic Light System

8

SKILL LEVEL : INTERMEDIATE

John Shovic

Guest Writer

PROJECT CURACAO
Remote sensor monitoring in the Caribbean

Part 6: Upgrades on the Beach

What is Project Curacao?

This is the sixth and final part of a series

discussing the design and bui lding of Project

Curacao, a sensor fi l led project that hangs on a

radio tower on the island nation of Curacao.

Curacao is a desert island 1 2 degrees north of the

equator in the Caribbean. This article wil l show the

upgraded sensor suite, higher rel iabi l i ty design and

replacement of the i l l-fated wind turbine.

Project Curacao is designed to monitor the local

environment unattended for six months. I t operates

on solar power cel ls and communicates with the

designer via an iPad App called RasPiConnect. Al l

aspects of this project are designed to be

monitored and updated remotely (with the current

exception of the Arduino Battery Watchdog). I t

was first deployed in March 201 4 and has been

featured in five previous articles in The MagPi

Magazine that covered the Raspberry Pi Model A,

the various subsystems (Power, Environmental

Sensor and Camera), the software running on the

Raspberry Pi and Arduino Battery Watchdog, and

the first months of operation.

First six month results

The box was deployed in mid-March 201 4, and I

didn't see the box again unti l September 30, 201 4.

Overal l , I was pretty pleased with the results. The

box operated normally most of the time but would

gl itch about once a month when the DS1 307 Real

Time Clock would lose where it was and the

Battery WatchDog Arduino would lock up and not

know what time it was. This happened three times,

roughly on a monthly basis.

Glitches in the Sun

A major gl i tch in the Project Curacao Solar Power

control system happened in late August, detected

by my trusty friend the RasPiConnect Control

Panel. The Solar Power system was working very

well providing ful l charges to the Raspberry Pi but

monitoring and debugging the system from 3,500

miles away was not getting any easier. When I

designed Project Curacao, I spent a lot of time

thinking about what might happen and how I could

9

work around issues. So far, I seem to have made

pretty good decisions, but a bad one I did make is

coming back to haunt me. The issue is with the

Battery WatchDog Arduino. I t is supposed to run al l

the time and never need to be rebooted. The issue

revolves around the DS1 307 Real Time Clock

connected via the I2C bus to the Arduino. The

DS1 307 is flaky. Because I sleep the Arduino

about 70% of the time to save power, the Arduino

Battery Watchdog is completely dependent on

reading the DS1 307 when it wakes up to set the

time. I saw the DS1 307 glitch a couple of times

during development and just improved the fi l tering.

These screen shots are taken from the

RasPiConnect (http://www.milocreek.com) based

Project Curacao Control Panel.

The Arduino Project Curacao software (3000 lines)

is robust and doesn't hang or bomb (known to me),

but it is vulnerable to the DS1 307 I2C Real Time

Clock going south, which it appears to do about

once a month. Heat? Electrical Noise? Unknown.

I saw it do it a couple of times during design and

added fi l tering to the Arduino power supply (a big

capacitor from +5V to Ground) and it did not do it

again. However, after six weeks in the hot sun, the

DS1 307 flaked out and lost the time again. I t has

happened three times in the last four months. Most

recently, the Arduino recovered itself as can be

seen in the log to the right where the DS1 307 RTC

fai ls and then recovers later. Sometime after this,

the Arduino managed to reset to the default

threshold values and time values for starting up

and shutting down the Raspberry Pi, the

temperature and voltage control thresholds. This

meant that the Raspberry Pi stayed on a lot longer,

hence the battery went lower.

These results and gl itches made replacing the

DS1 307 a top priority. I f you would l ike to see a set

of benchmarks of various Real Time Clocks, check

out http://www.switchdoc.com/201 4/09/real-time-

clock-comparison-results/. I real ly did my

homework on what to replace the DS1 307 with. I

chose the temperature compensated DS3231 .

The upgrade

We planned for the upgrade for months. We dug

through the data coming back from the Raspberry

Pi, stared at the RasPiConnect graphs looking for

behaviour clues and worried about structural faults.

We final ly came to the conclusion that we would do

the fol lowing four things:

- Add a new wind turbine and stiffen the rack as

well as el iminating the pop-out problem (see Article

5 on Project Curacao in The MagPi issue 24).

- Add new weather instruments and a way to store

data at night.

- Add more solar panels, but not a sun tracker (a

new set of products and articles are coming out at

http://www.switchdoc.com about sun trackers for

the Arduino / Raspberry Pi in early 201 5).

- And most importantly make the Arduino more

rel iable by replacing the DS1 307 and adding an

external WatchDog Timer.

The wind turbine WeatherRack

After the great Wind Storm of March 201 4 in

Curacao (which real ly wasn't that much of a wind

storm - 35 MPH, it popped the turbine out of the

http://www.milocreek.com
http://www.switchdoc.com/2014/09/real-time-clock-comparison-results/
http://www.switchdoc.com

1 0

tube and then the turbine destroyed itself

completely) , we decided that we had to make the

improvements to have a longer lasting wind power

turbine. The turbine only lasted one week in March

201 4 after I left. Now it has been up for three

weeks and we are keeping our fingers crossed.

We replaced the wind turbine, added a cable to

keep it from popping out, stiffened the mount and

added wind speed, direction and rain

measurement to Project Curacao. Below is a

picture of the new turbine and WeatherRack.

Adding more weather sensors using
WeatherPiArduino

Putting more weather sensors in the box was

problematic. Since bui lding the box we have made

the move of not bui lding prototype boards by hand.

We make PC Boards using the excel lent PCB

services of DFRobot and TinySine. Both of these

guys rock. Fast and cheap with very good quality.

Out of this weather sensor addition was born the

WeatherPiArduino board (avai lable at

http://www.switchdoc.com) for interfacing between

the Weather Meter from Sparkfun or Argent Data

Systems and an Arduino or Raspberry Pi. The new

version of the WeatherPiArduino just released to

manufacturing adds an I2C temperature sensor /

barometric pressure sensor and has the sockets to

connect to the Weather Meter the neccessary

pul lups for the weather sensors and the 3.3V/5.0V

I2C and GPIO level shifters. I t also has three

sockets on the board for the RTC / FRAM and ADC

talked about in the next section. The instal led

WeatherPiArduino Board (sans the DS3231 since

it covers up a bunch of good stuff) is below.

Adding more storage on the Arduino
and the new DS3231 RTC

The WeatherPiArduino board has sockets for a

DS3231 (our RTC of choice) from Amazon, an

Adafruit 256Kbit FRAM for nighttime data storage

and an Adafruit ADS1 01 5 4 channel A/D converter

(al l I2C devices) that we ended up not using when

we eliminated the vibration sensor due to lack of

time to finish the design. We wrote an Arduino

software l ibrary for this board and the sensors

avai lable at

http://github.com/switchdoclabs/SDL_Weather_80

422.

The DS3231 has performed flawlessly in three

weeks of operation and the FRAM busi ly is storing

weather information during the time that the

Raspberry Pi is off and then transferred by the

Arduino Battery WatchDog when the Pi wakes up

in the morning. 24 hour coverage now of wind, rain

and wind turbine performance. The wind turbine is

sti l l an underperformer but now we have a lot more

data to prove that. RasPiConnect presents the 24/7

weather data coming to us from the Raspberry Pi.

http://switchdoc.com
http://github.com/switchdoclabs/SDL_Weather_80422
hp://www.switchdoc.com

1 1

Adding more solar panels

First the good news. The Adafruit solar panels

survived 6 months in the sun and rain in excel lent

condition. No trace l ifting (a Curacao expert on

solar cel ls, Brett Ruiz, told us that trace l ifting and

seal breaking is a big problem on the island) and

they were perfectly clean. Our last test of solar

panels and l ights was 3 metres lower and 1 0

metres closer to the ocean. Those lasted less than

three months. We made sure no one cleaned the

panels during the six months. The picture of the 6

month old solar cel ls is below. Those are clouds

reflecting in the panels, not dirt.

We had a power problem with the Arduino Battery

Watchdog. On a very cloudy week, it would lose

battery power and then lock up in some odd state

and never come back up. We needed more power

(although adding the external WatchDog timer also

fixes the issue) so we added a new solar panel to

the Arduino and added a new solar panel for the

Raspberry Pi. About 70% more power for the

Arduino and about 25% or so more for the

Raspberry Pi. These numbers are less than you

would expect because of the angles of the panels

to the 1 2 degree tropical sun. Angle to the sun

makes a huge difference:

http://www.switchdoc.com/201 4/1 0/solar-power-

raspberry-piarduino-new-results/

Now the power RasPiConnect screen looks real ly

good. The graph below shows the voltage from the

solar cel ls goes above 5V on a dai ly basis which

indicates the battery is ful ly charged. The

Raspberry Pi sti l l does not get enough energy to

run 24/7, but since the voltage goes over 5V on the

Pi solar cel ls on most days, it's clear that the

l imitation is how much we can store in the battery,

and not the cel ls themselves.

SwitchDoc.com is releasing a third generation

improved solar cel l charger and sun tracker cal led

SunAir in the late fal l of 201 4. SunAir is the sum

total of al l our Project Curacao experience and

real ly nai ls what is needed for this kind of system.

Oh, it charges your phone too, which is helpful in

Curacao where the mains power goes away

sometimes.

The BIG reliability improvement - a
WatchDog to watch the Arduino

Computers, l ike Project Curacao, sometimes lose

their way. A power gl itch, RFI (Radio Frequency

Interference - curse of hanging on an amateur radio

tower see http://www.switchdoc.com/201 4/1 1 /1 6-

days-breeze-wind-power-raspberry-pi-arduino/) ,

hanging peripherals, or just plain bad programming

can cause your small computer to hang causing

your application to fai l . I t happens al l the time.

How often do you have to reboot your PC? Not

very often, but once in whi le your Mac or PC wil l

freeze meaning you have to power cycle the

computer. Raspberry Pi 's wil l sometimes freeze

because of a task not freeing up sockets or

consuming other system resources. Arduinos

sometimes freeze because of brownouts on the

power l ine or a short power interruption or because

of running out of system resources such as RAM

and/or stack space, a very l imited resource in an

Arduino. Sometimes even programmers make

mistakes.

In small computers, you give your device the

chance to recover from faults by using what is

cal led a WatchDog Timer (WDT). A WDT is an

http://www.switchdoc.com/2014/10/solar-power-raspberry-piarduino-new-results/
http://www.switchdoc.com/2014/11/16-days-breeze-wind-power-raspberry-pi-arduino/

1 2

electronic timer that is used to detect and recover

from computer malfunctions. I f the computer fai ls

to reset the timer (also cal led “patting the dog”) on

the WDT before the end of the timer, the WDT

signal is used to initiate either corrective actions or

simply to reboot the computer.

We talked about a Deadman Switch in The MagPi

article about the Arduino Battery WatchDog (The

MagPi issue 20) and said that we would probably

rue the day we did not stick an external WatchDog

timer on the Arduino. Well , we did rue the day. We

had fai lures from brownouts that hung the Arduino

(not to mention the DS1 307 problems). Does the

Arduino have an internal WatchDog Timer? Yes,

but it is disabled on some Arduinos and an internal

timer does NOTHING for the kind of hangs that we

are experiencing. I t wi l l help make your software

more rel iable, but does l ittle in the case of a

Solar/Wind powered system.

We ended up bui lding a 555 timer based external

Dual WatchDog Timer and bui lding a board for

Project Curacao. This is a 21 2 second WatchDog

Timer that is compatible with the Arduino and

Raspberry Pi. Here is version 1 of the board in

Project Curacao. Only one side of the WatchDog

board is populated for Project Curacao. We took

what we learned with this board and made version

2.

Version 2 is professional ly manufactured with a

range of 30 to 240 seconds of timeout and with the

right kind of connectors and diodes to make it work

well with both the Arduino and the Raspberry Pi.

The Dual WatchDog Timer product specification,

theory of operation and the product is avai lable on

http://www.switchdoc.com.

The results of adding the WatchDog were

invaluable during the 28MHz radio contest on the

tower where the WeatherRack is hung. The

Arduino rebooted on a regular basis (You could

see it in the log) from the Radio Frequency

Interference (RFI) coming from the close antennas.

The cable from the box to the tower is about 1 5

meters which turns out to be very close to 3 times

the wavelength of 28MHz, so we got substantial

voltage on the l ines. According to two of the radio

gods, the princely Dr. Geoff Howard and the saintly

Jeffery Maass (amateur radio experts in their own

right) , the voltage on my lines should be

somewhere between 2 and 4 volts that close to the

antennas which could seriously interfere (and did)

with Project Curacao. Shortly after the end of the

contest, al l problems went away and the box has

been working perfectly for 1 4 days with no Arduino

reboots at al l . We haven't had a brownout yet, but

we did test that whi le we were down there by

running the battery down by hand. Below is the

box in it's final resting place with the WeatherRack

on the tower in the background.

You can see the l ive hourly data and picture from

Project Curacao at:

http://mi locreek.com/projectcuracaographs.

What's Next?

At this point, we are planning to visit the box again

in June of 201 5. We wil l analyze the logs and the

corrosion of the parts and solar cel ls, and carry the

box gently home in our luggage. What are we

going to do next with the box? Maybe bury it with a

copy of al l the MagPi articles written about it or

more l ikely use al l the parts in new projects! Or

maybe write one more update if the powers that be

would l ike that. This has been a large project

(started in June of

201 3) and we want to

thank all of the people

and companies that

helped make this

possible. More on

Project Curacao at

www.switchdoc.com.

More discussion on Project Curacao at:

http://www.switchdoc.com

http://milocreek.com/projectcuracaographs
http://www.switchdoc.com
http://www.switchdoc.com
http://www.switchdoc.com

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

1 4

Dougie Lawson

MagPi Writer

NEW MODEL A+
Ready for embedded applications

Introducing the latest
Raspberry Pi hardware

After much speculation, the Raspberry Pi Foundation

official ly released the Model A+ Raspberry Pi on the

1 0th of November. The Model A+ is an upgraded

version of the Model A, which is intended for

embedded applications. Similar to the Model A, the

Model A+ has 256MBytes of memory on top of the

SoC (System on Chip) and a single USB socket. The

Model A+ mirrors the other Model B+ interfaces,

including the longer GPIO connector and combined

audio and analogue video jack. The Model A+ is only

65mm long and weighs just 23g, which is a significant

reduction over the Model B+ length 85mm and weight

41 g and the previous Model A. The processor is the

standard Broadcom BCM2835 SoC that is present on

al l current and previous Raspberry Pi products.

Pricing

The Model A+ is a powerful computer that is 20mm

smaller than the length of a credit card and has a

retai l price of only $20 (excluding taxes and

shipping). This is $5 cheaper than the previous Model

A Raspberry Pi.

Layout

The first thing that stands out about the Model A+ are

the mounting holes. They have the same spacing as

the mounting holes on the B+, such that HAT

(Hardware Attached on Top) boards can be securely

fitted. The GPIO connector is located along the same

edge as the Model B+ and also has 40-pins. The left

hand 26-pins are associated with the same

connections as the 26-pin header on the Model A and

version 2 Model B Raspberry Pis.

Connections

The top of the Model A+ is shown below. The 40-pin

GPIO header is on the right-hand side, running down

1 5

the ful l length of the board. The USB port is located

at the bottom of the board. On the left-hand, there is

the micro-USB power connector at the top, the HDMI

connector in the middle and the combined 3.5mm

audio and analogue video jack at the bottom.

The DSI (display interface) and CSI (camera

interface) are on the top of the board and are label led

as DISPLAY and CAMERA respectively.

Turning the board over there are some components

and a lot of test points. The test points are used for

quality control during manufacture. Similar to the

Model B+, the A+ has a microSD card slot. Unl ike

the SD card on the Model A, the microSD only

requires a l ittle extra space around the edge of the

board.

So all in al l the A+ is a superb tiny computer. I t has a

lot of processing power in an incredibly small

package. I t is going to be the Raspberry Pi of choice

for anyone who needs the lowest weight and smallest

footprint (and it fi ts in an Altoids tin) . As usual with

each of the new Raspberry Pis; Alex Eames

(http://raspi.tv) has done some power usage

measurements. (Alex's complete results can be

found on his website.) Alex has run a sequence of

four tests on a Model B, Model B+ and the new Model

A+. The conclusion of these tests is that the Model

A+ uses 70% less power than the old Model A. This

implies that those interested in launching their

Raspberry Pi to 40km under a hel ium balloon not only

have a lower payload mass, but wil l get more run-

time before their batteries go flat. I t also means that I

can run my Model A+ from mains electricity for a

whole year for less than one pound. I 'm sure we'l l see

lots of robot projects that are based around the Model

A+, rather than the other models.

Software

The NOOBS, NOOBS lite and the other OS images

from http://www.raspberrypi.org/download wil l al l

work on a Model A+. The process of writing an

image to the microSD card is the same as for an SD

card. The only requirement is that the card writer

should have a slot for a microSD card. For this

review, the Raspbian image was used to test the

network configurations and various extension boards.

Networking

Similar to the Model A, the Model A+ does not have a

RJ45 Internet connection. Therefore, networking can

be provided either using a USB WiFi dongle, USB

wired Ethernet dongle or ENC28J60 SPI Ethernet

board.

To configure the Model A+ and initial ise the

networking, a USB hub is needed to connect a

keyboard and mouse. Once the A+ has been

deployed within a robot or simi lar remote autonomous

project, the USB is probably not going to be needed.

Therefore, only having one USB port reduces the size

and power consumption of the A+.

For the average model A+ user, I recommend

purchasing either a Tenda W31 1 M Wireless-N1 50

USB WiFi dongle (RT5370 chipset) or an Edimax

EW-781 1 Un dongle (rtl81 88cus chipset) . The drivers

for both of these dongles are already present within

the Raspbian distribution. Remember that without a

working network, it is more difficult to instal l a special

driver that has to be downloaded from the Internet.

http://www.raspberrypi.org/download
http://raspi.tv/

1 6

Checking the Model type

Linux provides access to system information via the

/proc virtual fi le system. The CPU type can be

printed by typing cat /proc/cpuinfo

For a Model A+, this wil l return something similar to:

processor : 0

model name : ARMv6-compatible processor rev 7 (v6l)

Features : swp half thumb fastmult vfp edsp

java tls

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xb76

CPU revision : 7

Hardware : BCM2708

Revision : 0012

Serial : 000000005b592f7f

where the Revision number is used to store the

Model information and a Revision number of

0x0012 corresponds to a Model A+. (The Serial

number is unique for each Raspberry Pi.)

Testing peripherals

There are a lot of Raspberry Pi peripherals on the

market. Many of these add-on boards are designed

to fit the Model B and may rely on the placements of

the Model B components or the 26-pin header

dimensions to al low direct connection. However, with

some adapters or sl ight additions of supporting

material i t is normally possible to get peripherals

running as normal.

The first peripheral that I tested was a Fish Dish. (A

description of the Fish Dish is given in Issue 25 of

The MagPi.) The Fish Dish can be easi ly connected

to the A+ and fits the GPIO pins with the edge of the

Fish Dish overhanging the new pins on the A+.

The ModMyPi 8X8 matrix was next in my test l ist.

The matrix board fits, but is a l ittle wobbly. This can

be made more secure with some insulated packing.

Next up was my PiFaceCAD. This board is longer

than the A+, and the end of the PiFace board hangs

over the USB plug. The PiFaceCAD worked as

expected and could be secured with a bit more tape.

Fol lowing on from my Arduberry article in Issue 28 of

The MagPi, i t made sense to run a test on it too. I t

had the same wobble, but was easi ly connected and

ran without any problems.

The Wolfson audio board was designed to run on a

Model A or a second generation Model B Raspberry

Pi, since it is dependent on the P5 header that is not

present on the Model A+ or B+ Raspberry Pis. I wi l l

continue to use the audio board with my Model B.

The final peripheral to be tested was my Quick2Wire

GPIO expander board. The GPIO expander is

designed with a 26-pin female connector on the end

of a ribbon cable that should be connected to a 26-

pin GPIO header. A 26-pin female connector cannot

be directly connected to a 40-pin header, such as

present on the Model A+ or B+, since the additional

pins interfere with the connector. The easiest way to

solve this problem is to make a new ribbon cable that

has a 40-pin IDC connector on one end and a 26-pin

IDC connector on the other. Making ribbon cables

with IDC connectors is covered in Issue 3 of The

MagPi.

The community has been adapting to the presence of

the combined audio and analogue jack on the Model

B+, since there is no common standard for

connections of this sort to a four pole 3.5mm jack.

The four pole connector on the Model B+ is the same

as on the A+. Thankful ly, Matt Hawkins has provided

an excel lent write up at http://www.raspberrypi-

spy.co.uk/201 4/07/raspberry-pi-model-b-3-5mm-

audiovideo-jack/ on this subject.

Summary

The Model A+ has lots of simi larities to the older

Model A, but more similarities to the newer Model B+.

The primary new features are the 40-pin header that

provides access to extra GPIO pins and the second

I2C interface, the whole package is 20mm shorter

than the A, B or B+ boards and weighs less than

Models A, B and B+. The Model A+ is perfect for

projects that require the lowest power consumption

and smallest form factor.

http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack/
http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack/
http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack/

http://www.dexterindustries.com

1 8

SKILL LEVEL : INTERMEDIATE

Derek Campbell

Guest Writer

INTRODUCING OPENCV
Optical Navigation

Computer Vision on the
Raspberry Pi - Part 2

Last time we saw how PiTeR, the terrestrial

robot, can identify symbols he sees in his

environment, even when the symbols are at an

angle to the ideal symbol being used as

comparison - as might happen if the robot arrived

at the symbol sl ightly off-axis from it.

This article does not cover any new uses of

OpenCV, but instead shows how what we got

working last time is integrated into PiTeR's

control programs to al low him to navigate

autonomously using the information provided by

the OpenCV algorithms.

Take me for a drive

We want to enhance our example to distinguish

between the different symbols and act on them.

PiTeR needs to turn and drive based on what he

is seeing. Because the actions and control logic

are different systems, we wil l deal with turning

and driving separately.

PiTeR balances on two wheels. How he does

this wil l be covered in a later article, but you can

find out more now on his website https://github.

com/Guzunty/Pi/wiki/PiTeR-and-OpenCV. He

drives forward or backward when both wheels

turn in the same direction and at the same

speed. When the wheels rotate at different

speeds, he turns. I f he is standing sti l l and the

wheels rotate in opposite directions, PiTeR turns

on his own axis.

Now let’s think about what we want to get PiTeR

to do. We want him to look in his visual field for a

symbol of a particular colour. What we want to do

next depends on how far away from the symbol

he is. I f he is far from the symbol, we want him to

drive towards it. I f he is close we want him to

recognise the symbol and act on it.

You may recal l from the last article PiTeR

recognises the fol lowing symbols:

Robot tracking symbols:

Turn Back, Turn Left, Home and Turn Right.

I t is clear what we want to do for the "Turn"

symbols, but what about "Home" and "Turn

Back"? In the case of "Turn Back", we want him

to turn around and go back the way he came. In

the case of "Home", he is at the end of the trai l

and has reached his goal. When this happens we

wil l make him do a little victory dance!

https://github.com/Guzunty/Pi/wiki/PiTeR-and-OpenCV

1 9

First, we need to decide if we are near or far from

the symbol. This is easy to do. From last time you

wil l recal l that we get a rectangle locating the

symbol patch in PiTeR's visual field. Al l we need

to do is to compute the area of the rectangle. I f i t

is less than a certain size we wil l drive forward, if

i t is more, we wil l stand sti l l and figure out which

symbol it is.

While we are driving, we wil l look at the position

of the patch in the camera's field of view. We wil l

input small turn commands so that the symbol is

kept as close to the centre of our view as

possible. In this way, PiTeR wil l correct himself

as he drives, always moving towards the symbol.

Once we are close enough, we wil l use the ‘good

match’ (knnMatch) feature in OpenCV, as we

discussed last time. The symbol with the greatest

number of good matches wil l be the one we act

on.

Threading

Before we go off and start work on this, there are

a couple more things to think about. Once we

start driving around, we cannot go off into a loop

and forget about everything else. PiTeR

constantly exchanges information with the

person control l ing him; for example, they might

decide to intervene while he is doing his

automated actions. I f he starts to ignore his

human, he wil l be branded a rogue robot!

He also needs to exchange information with his

wheel control system in order to drive and,

equal ly important, to know how far he has gone

and slow down when necessary.

To support these needs, PiTeR needs to execute

his long running algorithms, l ike symbol and

colour patch detection, independently of the

control loop. Only when the image processing is

complete do we look at the results in the main

drive loop. This keeps PiTeR responsive to

human control.

One of the things that is so great about a longer

term project l ike a robot is that you never know

where it is going to take you. To allow PiTeR to

continue control l ing things and do vision

processing, we need to learn about Python

threads. To create a new thread, we create a

Python class which uti l ises the Thread class of

the threading package:

class SymbolFinder(threading. Thread):

To use threading, we need to define two

additional methods,

def __init__(self):

super(SymbolFinder, self). __init__()

rest of our initialisation here

and

def run(self):

loop repeating the colour patch search

The __init__ method is special . I t is cal led a

constructor. When you create an instance of

SymbolFinder , the __init__ method gets

cal led for you automatical ly. To use threading,

we must cal l the Thread constructor in our own

constructor with the super command.

Now, before entering the main loop, we create an

instance of SymbolFinder and call the start

method, l ike this:

symFinder = symbolFinder. SymbolFinder()

symFinder. start()

The start method is inherited from the Thread

class. I t returns almost immediately, but by the

time it does, whatever we put in the main loop

wil l be running independently on its own

20

operating system thread. Cool, we are now doing

two things at once, albeit a l i ttle more slowly than

if we were doing each alone.

PiTeR also uses the same technique for

schedul ing actions l ike speech, LED il lumination

and autonomous driving. By using separate

threads, PiTeR appears to be able to do several

things at once, which is what we would expect of

a good robot.

Which symbol did we find?

The next thing we need to enhance is symbol

recognition. Our previous script read just one

example symbol and looked for a match with it.

We now need to recognise four different

symbols. We need to adjust the script to read all

four symbols and compute the key image

features for each one. As before, we wil l do this

at start up time because it only needs to be done

once for each reference image.

We wil l also need to adjust our matching

algorithm to loop over the four sample symbols

and compute the good matches for each one.

The script looks l ike this:

Repeat

Find a patch

If the patch is too small:

drive towards it.

if the patch is not in the centre, turn

while driving to bring it towards the centre

else:

crop the image to the size of the patch

(actually we will crop a bit bigger than this)

loop for each symbol

compute the good matches for the

symbol

remember the symbol with the most good

matches

if the matched symbol is a ' Turn Left'

or ' Turn Right' command

turn left or right 90 degrees

else if the matched symbol is ' Turn

Back’

turn through 180 degrees

else if the matched symbol is ‘ Home’

do a dance and exit the outer loop

In al l cases except the "Home" case, PiTeR wil l

find the next patch in the trai l . I t wi l l be further

away, so he wil l drive to it and the whole outer

loop wil l be repeated unti l he reaches the "Home"

symbol. Yay, PiTeR can do cub scout trai l

tracking!

More computer vision tricks

Following symbols is not the only thing PiTeR

can do. OpenCV also has faci l i ties for detecting

and recognising faces. To do this we use the

OpenCV CascadeClassifier class. This can

be programmed to look for the classic shape of a

human face. This is the same method that

modern cameras use to choose where to focus. I f

one is found in the field of view, we command

PiTeR's head servos to try to centre the face in

the field of view. This gives him the abi l i ty to

fol low you as you move around.

I f more than one face is found, we choose a face

at random and centre that. This gives the

uncanny impression that PiTeR is looking at the

different people in a crowd (and in a way, I

suppose he is) .

Coming up...

We can take this one step further and have

PiTeR say "Hello! " to individual people he

recognises. To do this, we need to train him with

sti l l photos of the people we want him to

recognise. We wil l discuss face recognition in the

next article.

www.wyliodrin.com

22

SKILL LEVEL : BEGINNER

David Bannon

MagPi Writer

Logging temperature with
1-wire sensor

The Raspberry Pi is particularly suited to logging data

and temperature is a very popular thing to log! This

article describes how to measure temperature using

the DS18B20 1-wire digital sensor from Dallas

Semiconductor. The DS18B20 sensor is widely

available from many different suppliers, as a

component or packaged within a sealed unit, e.g.:

http://www.adafruit.com/product/381

The sensor requires a 4.7kOhmn resistor to connect

it to the Raspberry Pi.

The DS18B20 sensor is relatively cheap and is

supported by the Linux kernel present in the current

Raspbian distribution for the Raspberry Pi. The data

recorded from it is available directly as a temperature

value. Without additional calibration, it is sufficiently

accurate for most applications. It can measure

temperature from -55 to 125degC, with a resolution of

9 to 12 bits implying an accuracy of 0.5degC over

much of the range.

If you are happy with a soldering iron, making your

own sensors using the TO92 packages is easy, cut

the DS18B20's leads so there is only about 5mm

remaining, solder a lead to each, mix up some epoxy

and fill the volume around your solder joints. A

sensor made like this is smaller and possibly faster to

respond that the more robust commercial ones.

The real beauty of the DS18B20 sensor is that it is

very easy to use on the Raspberry Pi! While it is

called a V1-wireWinterface, in practice it needs two

wires and over long runs three wires are more

reliable. The three wires correspond to a ground or

common connection, a 3V3 supply and the signal

output from the sensor. To make life easier, it is

possible to connect many sensors in parallel using

the three connection wires. Therefore, an array of

DS18B20 sensors uses very few GPIO connection

pins. It is possible to use long cables with the

sensors and each sensor draws very little current,

adding only a small additional loading to the

Raspberry Pi.

The signal wire is used to both to read and write to

the sensors, where each sensor has its own unique

identifier (ID) number. The w1-gpio and w1-therm

Linux kernel modules hide all the complexity and are

pre-installed in both Raspbian and Arch Linux for the

Raspberry Pi.

http://www.adafruit.com/product/381

23

Read the data sheet of the DS18B20 carefully,

checking which wire is which. Then connect the 3V3

volt input wire to pin 1 on the Raspberry Pi GPIO. If

in doubt, refer to http://elinux.org/RPi_Low-

level_peripherals for the GPIO pin mapping. Connect

the signal to pin 7 and ground to pin 9. Make sure

that a 4.7kOhm is connected as shown in the

diagram above. The connection can be achieved

using a breadboard or by soldering the component to

the other wires. Then power up the Raspberry Pi and

open a LXTerminal. The Linux kernel modules are

not loaded by default. To load them type:

sudo modprobe w1-gpio

sudo modprobe w1-therm

If there are no error messages, then the modules

should have been loaded successfully. When the

kernel modules are loaded they create directories in a

virtual file system, where there is one instance for

each connected sensor (and one for a master). For

example, typing ls -L /sys/bus/w1/devices

28-000004749871 28-001414af48ff

28-0014153fc6ff w1_bus_master1

In this example, three sensors were connected. If you

see only the master and not the serially numbered

sensor directories, check your wiring. The

temperature value can be printed by typing:

cat /sys/bus/w1/devices/28-000004749871/

w1_slave

which returned a temperature of 22.062degC.

1 01 4b 46 7f ff 0f 10 02 t=22062

The sensor values can also be read using a simple

Python program:

#!/usr/bin/env python

import os

dev_dir = '/sys/bus/w1/devices/'

devices = os.listdir(dev_dir)

devices.remove('w1_bus_master1')

for dev in devices:

f = open(dev_dir + dev + '/w1_slave', 'r')

content = f.readlines()

temp_start = content[1].find('t=')

print content[1][temp_start + 2:] + dev

f.close()

Make this program executable by typing chmod 755

test.py . Then run the program by typing

./test.py . The program prints the temperature

readings in milli-degC.

The files in the virtual file system are created and

maintained by the Linux kernel modules and may not

exist when the Linux installation is being updated or if

the modules have not been loaded. Therefore, there

is a more complete Python program on the next page.

The program initialises, identifies connected sensors

and displays temperature readings. To continue to

read the temperature values, the read_temps()

function should be called many times within a loop.

The program contains three functions, such that

pieces can easily be used for other programs. The

load_modules() function checks to see if the

kernel modules have been loaded and attempts to

load them if necessary.

The read_temp_lines() function accesses the

virtual files that are associated with the temperature

sensors and returns the values stored in the files.

Finally the read_temps() function parses the text

output and returns the temperature values.

The read_temps() function can be called when the

kernel is updating its sensor file. If this happens it

waits for a tenth of a second and tries again. The

function can also cope with a situation where a

sensor has been unplugged.

Save the program as temperature.py, make it

executable and run it by typing:

sudo ./temperature.py

http://elinux.org/RPi_Low-level_peripherals
http://elinux.org/RPi_Low-level_peripherals

24

#!/usr/bin/env python

import os, time, sys

dev_dir = '/sys/bus/w1/devices/'

def load_modules():

first_time = 0

if os.getuid() == 0: # Only root can load the mods

if os.system('modprobe --first-time -q w1-gpio') == 0:

first_time = 1

if os.system('modprobe --first-time -q w1-therm') == 0:

first_time = 1

if first_time: # wait a bit for the devs to be populated

time.sleep(5)

return first_time

else:

if os.system('modprobe -q w1_gpio') == 256 or os.system('modprobe -q w1_therm') == 256:

print 'sorry, modules not loaded and we are not root'

sys.exit(1)

def read_temp_lines(dev):

Note that the read process is slow, bit less than

a second per device.

try:

f = open(dev_dir + dev + '/w1_slave', 'r')

content = f.readlines()

f.close()

except IOError:

lines = ['no file']

return content

def read_temps():

Build a tuple with data from each device we know

about, set the ones that are not present to 0.0

results = []

for dev in devices:

content = read_temp_lines(dev)

if content == ['no file']:

results.append(0.0)

continue

while content[0].find('YES') == -1:

try again if dev was not ready

time.sleep(0.1)

content = read_temp_lines(dev)

temp_start = content[1].find('t=')

if temp_start != -1:

temp_string = content[1][temp_start+2:]

results.append(float(temp_string) / 1000.0)

return results

load_modules()

devices = os.listdir(dev_dir)

devices.remove('w1_bus_master1')

print read_temps()

http://www.oceanoptics.com

26

SKILL LEVEL : BEGINNER

Jon Silvera

Guest Writer

Part 5: Using FUZE BASIC to
control a robot arm

In this article I am going to show you how to use
FUZE BASIC to control a robot arm. The robot
arm that we are using is avai lable in the UK from
Maplin Electronics (Code: N35DU or A37JN).
Worldwide it is known as the OWI robotic arm.
Don't forget you need the USB version. The robot
arm is also bundled with the FUZE keyboard in
kit T2-R and the new BBC Micro styled T2-SE-R
kit. For more detai ls visit http://www.fuze.co.uk.

Before you attempt this project I am going to
assume that you have fol lowed the FUZE BASIC
articles in issues 26, 27 and 28 of The MagPi. I f
not I recommend you take the time to read these
articles and get famil iar with FUZE BASIC.

"Wir sind die Roboter"

Please setup your Raspberry Pi and connect the
robot arm to one of the avai lable USB ports. I t is

best to connect the robot arm before running
FUZE BASIC and make sure it is also switched
on.

Double cl ick the FUZE BASIC icon to
begin. As you wil l have come to
expect, FUZE BASIC wil l leap into
action and present you with the
Ready> prompt.

First of al l straighten the robot arm so it is not al l
folded up. Do not worry if the arm clicks here and
there. This is just the gears cl icking and nothing
actual ly breaking! Your robot arm should look
something l ike the picture below.

Warning : The fol lowing commands wil l set the
robot arm moving as soon as you press <Enter>.
I f you do not type the next command the arm wil l
go as far as it can and start cl icking - you should
enter the ArmBody (0) command to stop it.

http://www.fuze.co.uk/resources-2
http://www.fuze.co.uk

27

Type in the fol lowing commands, pressing
<Enter> after each one:

ArmBody (1)

ArmBody (-1)

ArmBody (0)

I f at this point you get an error stating “Unable to
find Robot Arm” or simi lar then
exit FUZE BASIC with the
Exit command. Unplug the
robot arm and reconnect it
again. Also please make
sure that the robot arm is
switched on. Start FUZE
BASIC and try the above
again. I f at this point it sti l l does not
work, seek help from an adult - or if you are an
adult then seek help from a chi ld!

Assuming everything worked correctly, did you
notice something? Yep, FUZE BASIC has
support for the OWI/Maplin robot arm bui lt into
the language!

Now try these other control commands. In each
case x can be either -1 , 0 or 1 . The exception is
ArmLight (x) where x can only be 0 or 1 . Try
out the different values for x and see what
happens:

ArmShoulder (x)

ArmElbow (x)

ArmWrist (x)

ArmGripper (x)

ArmLight (x)

A useful trick to know at this point is that you can
repeat the last command by pressing the <Up>
arrow key and then just edit the number.
Remember, you sti l l need to press <Enter>.

Time to write some code

Let’s put some of this new found knowledge into
action. Press <F2> to enter the FUZE Editor. I f
there is another program listed, then make sure it
is not needed and then press <F1 2> to clear it.
Enter the fol lowing l ines of code:

CLS

PROC ResetArm

END

DEF PROC ResetArm

ArmBody (0)

ArmShoulder (0)

ArmElbow (0)

ArmWrist (0)

ArmGripper (0)

ArmLight (0)

ENDPROC

Press <F3> to run the program. You wil l be
prompted for a fi le name. Name it something l ike
“RobotArm”, for example.

The purpose of this code is to make sure that the
robot arm can be instructed to switch everything
off, so absolutely nothing wil l happen when you
run the program, but we wil l use this code a lot
later.

Edit the program to add the fol lowing code at the
end:

DEF PROC DisplayInstructions

CLS

FONTSCALE (2, 2)

INK = Red

PRINT “We are the ROBOTS! ”

INK = White

HVTAB (0, 2)

PRINT “Press”

PRINT

PRINT “1 or 2 for Body left & right”

PRINT “3 or 4 for Shoulder up & down”

PRINT “5 or 6 for Elbow up & down”

PRINT “7 or 8 for Wrist up & down”

PRINT “9 or 0 for Gripper open & close”

PRINT “Enter to turn the Robot light on”

INK = Red

PRINT

PRINT “Space to stop movement & switch light

off”

ENDPROC

The first known use of the word Robot comes
from the Czech Čapek brothers and was used
in Karel Čapek’s science fiction play
“Rossum's Universal Robots”. The original
meaning of the Czech word "Robota" is
”drudgery” or “slave labour”.

28

We also need to add a call to PROC
DisplayInstructions . Add this to the start of
the program. The grey text is what you should
already have:

CLS

PROC ResetArm

PROC DisplayInstructions

END

You should have something similar to the picture
below.

When you press <F3> to run the program, you
should see something l ike the fol lowing picture.

PROC, FONTSCALE and HVTAB

We have introduced some new commands that
deserve a brief explanation.

The PROC command, as used in PROC
DisplayInstructions and PROC ResetArm, is
short for Procedure. The command tel ls the
program to jump to the part of the program

label led DEF PROC “procedure name” ; in this
case DisplayInstructions and ResetArm.

The end of the procedure is defined by the
ENDPROC or End Procedure command at which
point the program wil l return to where it was
called from.

Procedures help keep a program tidy as we can
place routines and functions away from the main
program. They also al low us to reuse the same
routine many times with a single command. The
ResetArm procedure for example can be used at
any point to turn everything off just by cal l ing
PROC ResetArm. I t is important to grasp this
concept as we wil l be using it later.

FONTSCALE is very straightforward. (1 , 1) is
normal size whereas (3, 3) is three times width
and height and (2, 4) is double width but four
times the height. You can experiment with this in
Direct mode.

HVTAB is also very simple to grasp once
explained. H is for Horizontal and V is for
Vertical. The command positions the text cursor
at a specified position on the screen so that the
next PRINT command wil l place the text at that
position on the screen.

Look at the example commands below:

HVTAB (1, 5)

PRINT "ROBOT"

29

Notice that the (0, 0) co-ordinates are in the top-
left corner when plotting text characters and the
size of the grid depends on the width and height
of the characters.

However, from the previous articles you wil l also
know that this is different for graphics. When
plotting graphics the (0, 0) co-ordinates are in the
bottom-left corner and the size of the grid is
based on the number of pixels along the width
and height of the screen.

Take action

We now add the main loop to the start of the
program. This wil l make the robot arm respond to
our commands.

There is a lot to add here so please be careful to
copy it exactly. Once again you already have the
code in grey:

CLS

PROC ResetArm

PROC DisplayInstructions

CYCLE

Key = Inkey

SWITCH (Key)

CASE 49

ArmBody (1)

ENDCASE

CASE 50

ArmBody (-1)

ENDCASE

CASE 51

ArmShoulder (1)

ENDCASE

CASE 52

ArmShoulder (-1)

ENDCASE

CASE 53

ArmElbow (1)

ENDCASE

CASE 54

ArmElbow (-1)

ENDCASE

CASE 55

ArmWrist (1)

ENDCASE

CASE 56

ArmWrist (-1)

ENDCASE

CASE 57

ArmGripper (1)

ENDCASE

CASE 48

ArmGripper (-1)

ENDCASE

CASE 32

PROC ResetArm

ENDCASE

CASE 13

ArmLight (1)

ENDCASE

ENDSWITCH

REPEAT

END

INKEY, SWITCH and CASE

There are more new commands here. First the
Inkey command. This is a very useful command
and one that you wil l use over and over again.

For example, we can use Inkey to pause any
program to wait (LOOP) for a key to be pressed:

PRINT “Press any key to continue”

CYCLE

REPEAT UNTIL Inkey <> -1

I f no key is being pressed the value of Inkey is
-1 . Whenever a key is pressed its ASCII
(American Standard Code for Information
Interchange) code value is stored in Inkey. So
the above loop wil l repeat unti l Inkey is not
equal to -1 .

30

This also means we can check if a specific key is
pressed. For example the value of the <Space
Bar> is 32, so we could change the above to:

PRINT “Press the Space bar to continue”

CYCLE

REPEAT UNTIL Inkey = 32

This time the program waits specifical ly for the
<Space Bar> key to be pressed and everything
else is ignored.

Here are a few more Inkey codes, just in case
you need them:

48 - 0 49 - 1 50 - 2 51 - 3 52 - 4 53 - 5

54 - 6 55 - 7 56 - 8 57 - 9 65 - A 66 - B

67 - C 68 - D 69 - E 70 - F 71 - G 72 - H

73 - I 74 - J 75 - K 76 - L 77 - M 78 - N

79 - O 80 - P 81 - Q 82 - R 83 - S 84 - T

85 - U 86 - V 87 - W 88 - X 89 - Y 90 - Z

32 - Space Bar 13 - Enter

In our program we store the value of Inkey (the
ASCII code value of any key pressed) in the
variable Key.

The remaining code is much easier than it looks.
The SWITCH command checks the value stored
in Key and, depending on the value, performs the
command(s) in the relevant CASE section.

So if <1 > is pressed, the ASCII code value is 49
(see reference chart above) and therefore the
command ArmBody (1) is executed.

Challenges

Now that you have seen how easy it is to control
the robot arm using FUZE BASIC, why not use
this new knowledge and try these two
challenges.

1) Practice moving different parts of the robot
around in Direct mode? Remember <F2>
switches between Direct mode and the Editor.

2) Write a new program to repeat a series of
robotic movements. Use the WAIT command to
determine how far each movement goes.

The Three Laws of Robotics

The science fiction author Isaac Asimov wrote
hundreds upon hundreds of books, articles
and short stories about science and robotics.
He introduced the idea of programming a set
of rule, or laws into all robots to protect
humankind.

The stories written around these laws are
extremely popular.

1 . A robot may not injure a human being or,
through inaction, allow a human being to
come to harm.

2. A robot must obey the orders given to it by
human beings, except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as
long as such protection does not conflict with
the First or Second Law.

Asimov later went on to add a new law to
precede these - the "Zeroth Law", which
focuses on humanity as a whole rather than
the individual.

0. A robot may not harm humanity or, by
inaction, allow humanity to come to harm.

There are many debates as to whether we
should implement a similar set of rules into
modern day robots. What do you think?

31

SKILL LEVEL : BEGINNER

W. H. Bell

MagPi Writer

EXTERNAL STORAGE
An overview for the beginner

Part 1 : File systems, partition
tables and rsync

I t is a good idea to backup any unique fi les that are

not part of a software package or standard

instal lation script, by saving them to an external or

remote storage area. This al lows the freedom to

experiment with a Raspberry Pi software instal lation

in the knowledge that fi les can be recovered if

something goes wrong.

When developing software, it can be helpful to use an

external repository such as Git. To make sure that the

fi les are safe, each change can then be pushed to the

external repository. The external repository can also

be downloaded onto another computer for recovery or

assessment by a teacher. More information about Git

and repositories is provided within the Version

Control series in Issues 27, 28 and 29 of The MagPi.

Instead of using an external repository, it is possible

to back up a complete SD card. This type of backup

operation was discussed in Issue 1 0 of The MagPi.

The complete backup of an SD card is not as quick

as using an external repository, but al lows the

posibi l i ty of saving larger fi les. While fi les can be

recovered from a SD card image by re-instal l ing a SD

card or by mounting the image on another disk, it is

not very convienent for single fi le recovery and does

not al low direct fi le access on non-Linux computers.

When developing software or other applications,

unique fi les are often kept within a users home

directory, whereas the other fi les on an SD card are

instal led by using a package manager and a set of

instal lation instructions. This means that most of the

SD card can be reinstal led by using a basic image

such as Raspbian and a script that contains package

instal lation commands (apt-get, pip instal l , etc.) . The

rest of this artcle assumes that the latest Raspbian

Linux image has been instal led on the cl ient

Raspberry Pi. However, the instructions should be

valid for other Linux distributions too.

File system considerations

There are several fi le systems that could be used to

store fi les from a Raspberry Pi. However, some are

more suitable than others. For example, a USB

memory key is typical ly formatted using the FAT32

fi le system. While accessable on many different

operating systems, this fi le system does not al low

Linux fi le permissions to be preserved. However, fi le

creation time can be retained. For this reason, the

FAT32 fi le system is not suitable to be used as a

home directory, but could be used to backup fi les.

New external hard disks are often formatted with the

NTFS fi le system. The EXT4, ZFS or OSX fi le

systems are more appropriate for saving fi les from a

Raspberry Pi, since these fi le systems allow the fi le

permission information to be preserved in the backup

directory structure.

32

Mounting a USB key

USB memory keys are cheap and can be connected

directly to a Raspberry Pi, via a USB hub or from a

remote Raspberry Pi or other computer on the same

network. They provide an inexpensive backup

solution, but can fai l i f used for a large number of fi le

writing operations.

When a USB device is attached to a Raspberry Pi

that is running Raspbian it wi l l cause a message to be

printed in the /var/log/messages fi le. While the

kernel in Raspbian recognises a large number of

USB devices, it does not automatical ly mount storage

devices.

Before attaching a USB key, open an LXTerminal

and type:

sudo tail -f /var/log/messages

Then connect a new USB key to the Raspberry Pi,

either directly or via a USB hub. When the USB key

is attached a message similar to the one at the

bottom of this page wil l be printed on the screen.

Once the message has been printed, press <CTRL>-

<C> to exit the tail command.

In the example tail output below, sda is the device

name. There is only one partition on the device sda,

which is cal led sda1. I f there were more partitions on

the device then they would be visible in the output

message. I f more than one USB storage device is

connected, then the second device wil l be cal led sdb.

A storage device cannot be directly mounted and

needs to have at least one partition. A new USB key

or hard disk wil l typical ly have only one partition. To

use the partition within Linux it has to be mounted. A

mounted partition provides storage that is partial ly in

memory and partial ly on the storage medium. This

means that the partition is not as l ikely to become

fragmented, but also means that data can be lost if

the storage device is removed without unmounting

the device.

The USB key in the example tail output can be

mounted as the /mnt directory by typing:

sudo mount /dev/sda1 /mnt

Once this command has been typed, the size of the

USB key and the remaining space can be determined

by typing:

df -h /mnt

After some fi les have been copied to or from /mnt

the USB fi le system can be safely unmounted either

by shutting down the Raspberry Pi or by typing:

sudo umount /mnt

I f an application is sti l l using /mnt then the command

wil l fai l and report that the fi le system is busy.

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 652450] usb 1-1. 2: new high-speed USB device number 4 using dwc_otg

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 753515] usb 1-1. 2: New USB device found, idVendor=0781, idProduct=5566

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 753550] usb 1-1. 2: New USB device strings: Mfr=1, Product=2, SerialNumber=3

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 753565] usb 1-1. 2: Product: Firebird USB Flash Drive

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 753579] usb 1-1. 2: Manufacturer: SanDisk

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 753592] usb 1-1. 2: SerialNumber: 4C532000041220118090

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 759966] usb-storage 1-1. 2: 1. 0: USB Mass Storage device detected

Nov 7 14: 04: 54 raspberrypi kernel: [56548. 772703] scsi0 : usb-storage 1-1. 2: 1. 0

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 773846] scsi 0: 0: 0: 0: Direct-Access SanDisk Cruzer Slice 1. 26 PQ: 0 ANSI:

5

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 777593] sd 0: 0: 0: 0: [sda] 31266816 512-byte logical blocks: (16. 0 GB/14. 9 GiB)

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 780002] sd 0: 0: 0: 0: [sda] Write Protect is off

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 780757] sd 0: 0: 0: 0: [sda] Write cache: disabled, read cache: enabled, doesn' t

support DPO or FUA

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 800289] sda: sda1

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 806209] sd 0: 0: 0: 0: [sda] Attached SCSI removable disk

Nov 7 14: 04: 55 raspberrypi kernel: [56549. 841487] sd 0: 0: 0: 0: Attached scsi generic sg0 type 0

33

External hard disks

The procedure for mounting an external hard disk

drive on a Raspberry Pi is exactly the same as the

USB key example. The only difference is that external

USB hard disk drives are often initial ly formatted

using the NTFS fi le system.

Modifying the partition table

Each storage device has a partition table. The

partition table contains the dimensions of each

partition and a corresponding flag for each partition

type. For the partition table to be modified al l of the

partitions of the given device must be unmounted.

Using a USB key as an example, the partition table

can be accessed using the fdisk command. Enter:

sudo fdisk /dev/sda

From the fdisk prompt, the partition table can be

printed by pressing "p" at the prompt. In this case

there is only one FAT32 partition that spans the USB

key. (In the fdisk command /dev/sda should be

chosen to match the device, as discussed earl ier in

this article) .

For the next part of this example an EXT4 fi le system

wil l be used. Therefore, the fi le system type of the first

partition should be changed. The partition system id

can be changed to match the EXT4 fi le system by

pressing "t" at the fdisk prompt and entering "83":

Command (m for help): t

Hex code (type L to list codes): 83

The changes made can then be saved to the storage

device by pressing "w":

Command (m for help): w

The fdisk command provides information on each of

the possible commands and also has an associated

manual page. To read this, open another terminal

window and enter:

man fdisk

Creating an EXT4 file system

File systems can only be rebui lt when a fi le system

partition is unmounted. Unl ike the fdisk command,

only the partition that is to be formated needs to be

unmounted. To create an EXT4 fi le system on the

USB key enter:

sudo mkfs. ext4 /dev/sda1

A list of possible fi le system creation commands can

be found by entering man mkfs .

Once the EXT4 fi le system has been created, it can

be mounted:

sudo mount /dev/sda1 /mnt

While the EXT4 fi le system cannot be read on OSX or

Windows, it provides the advantage that the fi le

permissions and ownership information is preserved.

A USB formatted with EXT4 can be accessed using

another Linux computer, which is not necessari ly a

Raspberry Pi.

Introducing Rsync

The rsync command provides an efficient way of

copying fi les between directories, different storage

devices or to another computer.

To test the rsync command and understand some of

the fi le system issues, enter the fol lowing commands:

cd

mkdir -p important/private

touch important/textFile

touch important/private/textFile

touch important/private/exeFile

chmod 700 important/private

This wil l create a directory structure and three test

fi les. The permissions of the private directory are

chosen to be tighter than the default fi le mask and

only al low the user to access the private directory.

To print the fi le permissions and ownership

information type:

ls -al important

21

Now that the test directory structure has been

created, it can be mirrored to the EXT4 fi le system on

the USB key. Enter:

sudo rsync -av important /mnt/

Note: the rsync command is sensitive to the trai l ing

forward slash (/) character. This command wil l create

a new directory cal led important on the USB key. I f

the command is typed again, it wi l l check the fi le time

stamps and permissions and only copy fi les if the fi les

on the local disk do not match the fi les on the USB

key. I f there are additional fi les on the USB key that

are not present within the important directory, then

they wil l not be affected by this mirroring command.

To mirror the fi les and delete any fi les on the USB key

that are not present in the local copy of the important

directory, enter:

sudo rsync -av --delete important /mnt/

The action of typing this command can be checked

beforehand by using -avn rather than -av. When the

-n flag is used, rsync wil l just print what it would

have done. Fi les can be mirrored back from the USB

key to the local disk by swapping the two directories:

sudo rsync -av /mnt/important/ important/

More rsync commands can be found in the

documentation by entering man rsync .

Rsync to FAT32

I f a USB key is formatted with the FAT32 fi le system,

then fi les cannot be mirrored to it using rsync with

the -a flag. While the ownership and fi le permissions

information cannot be preserved on a FAT32

partition, the time stamp information can be

preserved.

Fi les and directories can be mirrored to a FAT32 or

NTFS fi le system on a USB key or external hard disk

by using the -rltv flag combination. For example:

sudo rsync -rltv important /mnt/

http://openelectrons.com

http://www.pimodulescart.com/shop/item.aspx?itemid=5
https://www.modmypi.com/shop/ups-pico

36

SKILL LEVEL : BEGINNER

Alec Clews

Guest Writer

Version control basics using
Git - Part 3

Introduction

In Issue 28 of The MagPi, I explained what

happens when a change is made to a document

or program, plus I described what a commit ID is

and the use of branches. We also touched on Git

graphical tools.

This month we wil l focus on merging branches, I

wi l l explain more git graphical tools plus how to

work with other people's code.

Merging

Let’s look again at the current structure of our

commit tree.

Figure 1 : The current repo history with three branches and

one commit on each branch.

At some point we need to bring both our

changes, which we are now happy with, back

into the master branch. This wil l make them part

of the default code and we can make new

changes on top of that. This process is cal led

merging .

The concept is simple enough, but it is important

to remember that we have three branches in this

example, master , make_rocks_R and

use_curses_symbols . Each branch has only

one commit.

Fast-forward merging

The first step is to merge make_rocks_R into

master . Notice that this operation is not

commutative. So make_rocks_R merged into

master is not the same as master merged into

make_rocks_R. Make the current branch

master . Enter:

cd ~/snakes

git checkout master

You should see the fol lowing output:

Switched to branch ' master'

Now merge from make_rocks_R into the current

branch. Enter:

git merge make_rocks_R

Author photo courtesy of Jack Cotton

37

You wil l see something similar to:

 Updating 5bfb67a. . f3e61d9

 Fast-forward

 game/snake. py | 4 ++--

 1 file changed, 2 insertions(+), 2

deletions(-)

Notice the phrase Fast-forward . This is

because master has no changes of its own since

make_rocks_R was created. In this case, al l that

happend was that the master pointer was moved

up the graph unti l i t pointed to the HEAD of

make_rocks_R. In a minute we wil l create a

merge that cannot be fast-forwarded.

The repo graph now looks l ike.. .

Figure 2: The repo history after our first merge.

Merging with conflicts

Now let’s perform a more complex merge using

use_curses_symbols . First let’s check we are

on the correct branch, master . Enter:

git branch

You wil l see the fol lowing:

make_rocks_R

 * master

 use_curses_symbols

Now enter:

git merge use_curses_symbols

This results in the fol lowing output:

 Auto-merging game/snake. py

 CONFLICT (content): Merge conflict in

game/snake. py

 Automatic merge failed; fix conflicts and

then commit the result.

Now we are getting a confl ict, which means that

Git cannot automatical ly merge the two versions.

This is because we have changed the same line

in both branches.

The git status tel ls that we have a half

complete commit with some instructions on what

to do next. Enter:

git status

 # On branch master

 # Unmerged paths:

 # (use "git add/rm <file>. . . " as

appropriate to mark resolution)

 #

 # both modified: game/snake. py

 #

 no changes added to commit (use "git add"

and/or "git commit -a")

Let’s see what our confl ict looks l ike. Enter:

git diff

 diff --cc game/snake. py

 index f3e61d9, 8db9999. . 0000000

 --- a/game/snake. py

 +++ b/game/snake. py

 @@@ -47, 9 -47, 9 +47, 13 @@@ def

add_block(scr, width, height)

 empty = False

 i f empty:

 - # if it is, replace it with a

"Y" and return

 + # if it is, replace it with a

"R" and return

 ++<<<<<<< HEAD

 + scr. addch(y, x, ord("R"),

curses. color_pair(2))

 ++=======

 + scr. addch(y, x, ord("Y"),

curses. color_pair(curses. COLOR_GREEN))

 ++>>>>>>> use_curses_symbols

 return

 def snake(scr):

Again we can ignore most of the this report.

What is interesting is the text between <<<<<<<,

======= and >>>>>>>. The markers are

38

inserted by Git to show the l ine that is different in

each version.

To fix this we only need to edit the fi le snake. py

and edit the text between the two markers

(including the markers) to be what we want.

Once this is complete try git diff again:

git diff

 diff --cc game/snake. py

 index f3e61d9, 8db9999. . 0000000

 --- a/game/snake. py

 +++ b/game/snake. py

 @@@ -47, 9 -47, 9 +47, 9 @@@ def

add_block(scr, width, height)

 empty = False

 i f empty:

 - # if it is, replace it with a

"Y" and return

-

 - scr. addch(y, x, ord("R"),

curses. color_pair(2))

 + # if it is, replace it with a

"R" and return

 - scr. addch(y, x, ord("Y"),

curses. color_pair(curses. COLOR_GREEN))

 ++ scr. addch(y, x, ord("R"),

curses. color_pair(curses. COLOR_GREEN))

 return

 def snake(scr):

I t wi l l probably take a little whi le to verify that this

report shows we have completed the change.

Once we are happy, (and we should also

probably do a test as well) , then we can add and

commit the change. Enter:

git add .

git commit -m "Merged in Rocks being ' R' "

 [master b499f56] Merged in Rocks being

' R'

So master has now got a new commit

(compared to the previous merge where it was

able to “reuse” the HEAD commit on another

branch i.e. the fast-forward). The new commit

contains both sets of changes.

Figure 3: The repo history after our second merge.

The example merge we just completed required

us to edit the merge halfway through. Life is

usual ly much simpler as Git can perform the edit

for us if the changes do not overlap, the commit

is then completed in a single merge command.

Rebase

Git also has a git rebase command which

al lows us to bring branches together in very

convenient ways. However, we do not have

enough space to discuss that in this article but

later I wi l l suggest some online resources for you

to use. I recommend getting famil iar with al l the

great things git rebase can do.

Graphical helpers

Previously I mentioned the git gui program

that provides a GUI interface to most of the

commands we have been using so far (e.g. init ,

add , commit) . Another program that I use a lot is

gitk which provides a nice l ist of the al l the

commits and is easier to browse than the git

log command. Use the --all parameter to see

all the branches in the current repo.

Difftool
As we have already seen, the output from

running the git diff command is not always

obvious. Fortunately Git provides the git

difftool command to display side by side

differences in the GUI. A variety of third party

tools are supported and I general ly use kdiff3

which works across Linux, OS X and Windows.

39

sudo apt-get install kdiff3-qt

To see the difference between the master and

make_rocks_R branches, enter:

git difftool master make_rocks_R

 merge tool candidates: opendiff kdiff3

tkdiff xxdiff meld kompare gvimdiff

diffuse ecmerge p4merge araxis bc3 emerge

vimdiff

 Viewing: ' game/snake. py'

 Launch ' kdiff3' [Y/n] :

Press <Y> and the above screen should appear.

Wrap up

Working with other people’s code
I hope to cover this topic in a lot more detai l in

future articles when we use services l ike GitHub

or BitBucket.

However, before we wrap up it is probably worth

introducing the git clone command. This is

identical to git init in that it creates a new

repository. But it then copies the contents of

another repository so that you can start working

on it local ly. For instance if you want to get a

copy of this article to improve, enter:

git clone https: //github. com/alecthegeek/

version-control-basics. git

 Cloning into ' version-control-basics' . . .

Ignoring files
By default, every time the git status command

is used Git reminds us about al l fi les that are not

under version control. However in most projects

there are fi les we do not care about (e.g. editor

temporarary fi les, bui ld time object fi les, etc).

Create the fi le . gitignore in the top project

directory and l ist al l the fi les you want to ignore.

Note: You should sti l l check the . gitignore

fi les into your repo along with the other fi les.

Further reading and help

We have covered the fol lowing Git workflows:

1 . Creating a new repo

2. Adding code to the repo

3. Making changes and using the index

4. Creating branches to keep changes separate

5. Using merge to bring our changes together

I had to skip over a few things so please make

sure you use the fol lowing great resources to

improve your knowledge.

A great jumping off point for Git is the web site

http://git-scm.com. This contains l inks to

software, videos, documentation and tutorials.

Additional ly, "Pro Git" (http://progit.org) is a

highly recommended online book. Also watch the

"Introduction to Git" video with Scott Chacon of

GitHub (http://youtu.be/ZDR433b0HJY).

Figure 4: Running the git difftool command.

Thanks to Matthew McCullough from Github for

his help with this article.

http://git-scm.com
http://progit.org
http://youtu.be/ZDR433b0HJY

40

SKILL LEVEL : BEGINNER

W. H. Bell

M agPi Writer

GOING BALLISTIC
Space arcade game

Learning to land on Mars

Adding natural physics processes to games can

make them more real and thri l l ing to play. I n

I ssue 1 7, a simple projecti le motion game was

introduced. The game included gravity and

initial velocity. These concepts can be used for

other types of games too.

This month's game introduces the simulation of a

spaceship landing on a remote planet, where the

landing craft obeys the normal laws of physics.

I n this case, the Lander has rocket motors to

change its direction.

The idea of the game is to land the spacecraft on the
landing pad. I f the spacecraft lands on the surrounding
ground, then it wi l l explode. I f the spacecraft does not
touch down on the landing platform correctly, then it wi l l
explode too. The spacecraft must be travel l ing slowly
when it touches down or it wi l l be destroyed.

The Lander sprite has three costumes, to show the
Lander with its engines on, when crashed, and when
the engines are off. The costume with the engines off
was copied and then modified to form the other
costumes. The costumes were drawn on their sides,
such that an angle of zero degrees corresponds to the
spacecraft pointing straight upwards. (M ore detai ls of
the Scratch system of angles are given in I ssue 1 7.)

41

The Stage

Two backgrounds were created for the Stage, where the size of the landing pad and the amount of

surrounding red rock was chosen to be different. Once the background images had been drawn,

the Lander sprite was resized to match landing pad by the right cl icking the mouse on the Lander

sprite. The colours used for the surrounding ground and

the landing pad for the two backgrounds were chosen to

be the same, to al low tests based on the colours of the

sprite and the background. Then a simple script was

written to select a random Stage background when the

green flag is pressed.

Controlling the Lander

The Lander is control led with the left and right arrow keys and the space bar. To prevent the

controls from moving the lander when the game is not taking place, a local variable was created

cal led flying. I f the flying variable is set to one, then the controls wil l change the angle of the

Lander sprite.

Tapping on the left arrow causes the Lander to turn 1 5

degrees to the left and tapping on the right arrow

causes the lander to turn 1 5 degrees to the right.

The space bar is used to fire the thrusters, to slow

down the Lander and manoeuvre it to the landing pad.

When the space bar is pressed, the costume of the

Lander changes to the version that shows the engines

burning. The costume continues to show the engines

burning, whi le the space bar is pressed. When the

space bar is released, the costume changes back to

show the engines as being off.

While the space bar is pressed the velocity of the

Lander is increased, according to its current direction.

The sine and cosine operators are used to calculate

the increase of the x and y velocity components using

the direction, where the velocity components are

stored in local variables vx and vy respectively. The

direction is zero, when the Lander points straight

upwards, 1 80 when it points straight downwards,

positive when it points to the right and negative when it

points to the left.

42

The Lander in flight

The Lander requires one more script block, to control

the fl ight of the Lander and to check to see if i t has

crashed or landed. The script on the left performs this

functional ity.

When the green flag is pressed, the Lander is reset to

point straight upwards, the engines are turned off and

its position is chosen at random along the top of the

screen. The local variables for the x and y velocity

components and the fl ight status are also reset. The

main repeat until loop continues to run unti l

the flying status has been reset to zero. The

first step within the loop is to reduce the vertical

velocity component by a small amount. This

reduction of velocity is present to simulate the

effect of gravity on the Lander. The next block

within the loop checks to see if the Lander has

touched the surrounding ground. I f i t has

touched it, then the costume is changed to the

crashed version and the flying status is set to zero. I f i t has not touched the surrounding

ground, then the program checks to see if the landing feet have touched the landing pad or not. I f

they have touched the landing pad, then the vertical velocity component and the direction of the

Lander is checked. I f the touch down is not successful, the Lander wil l be shown as crashed. I f

the landing is successful, then the Lander wil l say "Landed! ". While the Lander is not in contact

with the ground, the position of the Lander is updated using the velocity components. I n this

program, the speed of the loop regulates how fast time is passing in the simulation.

To make the game harder or easier, try changing the reduction of the vertical velocity in the loop

(the effect of gravity) or try changing the effect of the thrusters. The lander could be given a limited

amount of fuel, by counting the number of times the space bar is pressed.

Glasgow Raspberry Pi Day

When: Saturday 1 7th January 201 5, 1 0.00am to 4.00pm
Where: John Anderson Bui lding, 1 07 Rottenrow, Glasgow, G4 0NG, UK

A Raspberry Pi computing event for Gloucestershire and beyond. Deliberately family friendly, with a
portion of tickets reserved for chi ldren. http://phys.strath.ac.uk/raspberrypiday/

Lagos Raspberry Jam

When: Thursday 1 1 th December 201 4, 1 2.00pm to 6.00pm (WAT)
Where: 294 Herbert Macaulay Way, Sabo, Yaba, Lagos, Nigeria

The CcHUB Raspberry Jam is a rare gathering of hackers from within and around Lagos, aimed at

demonstrating the evolving maker movement in Nigeria. http://cchubnigeria.com/rpi/jam

Pi and More 6

When: Saturday 24th January 201 5
Where: Campus Alt-Saarbrücken, GoebenstraAe 40, 661 1 7 Saarbrücken, Germany

Pi and More is the first and largest German Raspberry Jam, with up to 1 50 attendees.

Event detai ls at https://piandmore.de/

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Manchester Raspberry Jam

When: Saturday 6th December 201 4, 1 0.00am to 5.00pm
Where: The Shed, John Dalton West, Chester Street, Manchester, M1 5GD, UK

This event is suitable for anyone – professional or novice, adult or chi ld – you don’t need any prior

knowledge or experience. http://www.eventbrite.co.uk/e/1 41 24943085

Northern Ireland Raspberry Jam 7

When: Saturday 1 3th December 201 4, 1 .00pm to 5.00pm
Where: Farset Labs, Linfield Industrial Estate, Belfast, BT1 2 5GH, UK

The sessions are aimed at complete beginners with more complicated chal langes and for those with

already some Raspberry Pi experience. http://bit. ly/farsetjam7

43

http://phys.strath.ac.uk/raspberrypiday/
http://www.eventbrite.co.uk/e/14124943085
http://bit.ly/farsetjam7
https://piandmore.de/
http://cchubnigeria.com/rpi/jam

44

SKILL LEVEL : BEGINNER

Paul Sutton

Guest Writer

MAGIC 8 BALL

Creating a GUI with
Python's Tkinter

A while back, I had never real ly touched

graphical programming. However after reading

through the book Raspberry Pi in Easy Steps I

decided to have a go myself. As I have started to

write my own graphical programs I wanted to see

if I could recreate a Magic 8 Ball .

Once you are famil iar with creating programs in

Python that run from the console the next step is

to create programs that wil l run in a window

(noting that not al l programs are suitable to run in

this way). We are going to use Tkinter, which

according to the Python Wiki

https://wiki .python.org/moin/TkInter is Python's

de-facto standard GUI (Graphical User Interface)

package.

We are going to bui ld up our GUI step by step so

that you can see exactly what is needed, starting

initial ly with a few concepts in Tkinter before

moving onto our Magic 8 Ball . But first, i t is back

to the command line to instal l Tkinter with the

fol lowing command:

sudo apt-get install python-tk

With that done we can create the start of our

Magic 8 Ball . The fol lowing program produces a

Window on the screen and sets various

attributes:

#!/usr/bin/env python

from Tkinter import *

window = Tk()

window.title('GUI Tkinter 1')

window.geometry("300x250") # w x h

window.resizable(0,0)

window.mainloop()

The first l ine tel ls the the interpreter to use

Python. This l ine is only essential i f you want to

run the program without prefixing it with the

python command. We then import al l functions

from the Tkinter module. At this point we can

define a window, which wil l have a title, a size

and whether it wi l l be resizable or not. Lastly,

window.mainloop() displays the window,

prevents the program from immediately exiting

and enables us to interact with it through the

GUI.

Using Tkinter's grid
We are now going to add a label to the window

we have created. To do this we need to add an

extra two lines of code immediately before

window.mainloop().

https://wiki.python.org/moin/TkInter

45

#define labels

box1 = Label(window,text="Entry 1: ")

#place the label in the window object

box1.grid(row = 1, column = 1,

padx = 5, pady = 5)

We are using the grid method to place the label

on the screen. Tkinter supports an invisible,

customisable, grid upon which screen elements

can be placed. Each element can be one or more

rows wide and one or more columns tal l .

Adding a button
Now that we are able to add objects to the

window we can add more interactive

components such as buttons. Replace the l ines

that we entered, above, with the fol lowing above

window.mainloop():

def btn1():

print ("button pressed")

btn_tog2 = Button(window,

text ='button1', command=btn1)

btn_exit = Button(window,

text ='exit',command=exit)

btn_tog2.grid(row = 1, column = 1,

padx = 5, pady = 5)

btn_exit.grid(row = 2, column = 1,

padx = 5, pady = 5)

First we define a function that can be called (for

the moment, ours wil l just print out some text to

the terminal) . Note that the l ines contained within

the function must be indented. Next we create

two buttons: the first names the function which

wil l be cal led when cl icked (btn1) , whi le the

second calls exit to close the program. exit is a

function bui lt in to Python and wil l appear in a

different colour in most editors (including nano

and Idle) . Lastly, we position both interface

elements onto the grid, one to a row, both in the

first column. We apply a bit of spacing (using

padx and pady) to ensure that the buttons do not

touch (this is good practice in user interface

design to reduce the chance of the user

accidental ly cl icking the wrong button).

Most importantly, functions must be defined

before you cal l them from within your program.

Improving usability
Now that we are able to add a label and a button

to a window, we can start to make our

application more user friendly. While buttons

have in-bui lt labels the purpose of this lesson wil l

simply be about adding both (for example: for

those times when you want to use an image for a

button and have descriptive text next to the

image). The button has adjacent text with a

description of what the button does.

#define functions for button(s)

def btn1():

print ("button pressed")

#create button objects

btn_tog2 = Button(window,

text ='button1', command=btn1)

btn_exit = Button(window,

text ='exit',command=exit)

#place button objects

btn_tog2.grid(row = 1, column = 2,

padx = 5, pady = 5)

btn_exit.grid(row = 2, column = 2,

padx = 5, pady = 5)

#define labels

button1 = Label(window,

text="click button")

button2 = Label(window,

text="exit program")

#place labels

button1.grid(row = 1, column = 1,

padx = 5, pady = 5)

button2.grid(row = 2, column = 1,

padx = 5, pady = 5)

I have placed the objects explicitly on the

window: column 1 has labels, whi le column 2 has

buttons. I have also tried to name the objects

logical ly in the code to make debugging easier.

46

We are also commenting (# comment) as we go

to explain what the code does.

Creating the Magic 8 Ball
Now that we can add objects we can add other

things too.

We need to modify our program to add three

things: a text box for the user to enter their

question, an area to show the response, and the

logicial code to generate that response. This wil l

take text input and then generate a random

response. This gives us the components of a

question and answer program. The response

part of the program was created by Tom Brough.

The ful l l isting is:

#!/usr/bin/env python

import random

from Tkinter import *

def response():

response_phrase =

random.choice(RESPONSES)

#print response__phrase

clear prev output

circletext2.delete(0, END)

circletext2.insert(0,str(

response_phrase))

#set up

window = Tk()

window.title('Magic 8')

window.geometry("300x100") #wxh

window.resizable(0,0)

RESPONSES = ["It is certain",

"It is decidedly so",

"Without a doubt",

"Yes definitely",

"You may rely on it",

"As I see it yes",

"Most likely",

"Outlook good",

"Yes",

"Signs point to yes",

"Reply hazy try again",

"Ask again later",

"Better not tell you now",

"Cannot predict now",

"Concentrate and ask again",

"Don't count on it",

"My reply is no",

"My sources say no",

"Outlook not so good",

"Very doubtful"]

#define and place labels

box1 = Label(window, text="Q: ")

box2 = Label(window, text="Answer: ")

box1.grid(row = 1, column = 1,

padx = 5, pady = 5)

box2.grid(row = 2, column = 1,

padx = 5, pady = 5)

#define entry box

circleVar = StringVar()

circletext = Entry(window,

textvariable=circleVar)

#define output box

circleVar2 = StringVar()

circletext2 = Entry(window,

textvariable=circleVar2)

#display boxes

circletext.grid(row = 1, column = 2)

circletext2.grid(row = 2, column = 2)

#define and place buttons

response = Button(window,

text ='response', command=response)

exitbtn = Button(window,

text ='Exit', command=exit)

#place buttons

response.grid(row = 4, column = 1,

padx = 1, pady = 1)

exitbtn.grid(row = 4, column = 2,

padx = 1, pady = 1)

#display window

window.mainloop()

47

Let's look at the program in more detai l . Firstly,

we import the Python random module. This lets

us hand over the task of selecting which

response to show over to the program and

means that we are unl ikely to see the same

response twice. We then define a function that

cal ls up the random response from an array of

values, known as a list in Python. In our function,

response_phrase is a variable that stores a

single randomly selected response. I have

commented out the print l ine as this was used

for testing, however you may wish to uncomment

it whi le testing your programs. In the final version

of any program it is recommended to remove

debug lines of code such as this so that they do

not get accidental ly uncommented later, resulting

in unexpected behaviour.

We now go on to define the window as before,

but you wil l notice I have made the window size

300 x 1 00. This makes the window a better fit

around the program buttons and text entry /

output boxes.

We type in the responses we want and store

these in a l ist cal led RESPONSES. You wil l note

that we do not define the l ist inside the function

cal l . I f we did, then the l ist would be recreated

each time the function is cal led, which would

slow (albeit, in this case by not much) the

program.

The line circletext2.delete(0, END) clears

the output text box from the first character. This

keeps the program tidy. You don't strictly need it

but it keeps things in good order. The next l ine

does al l the work, and inserts the response

variable response_phrase as a string.

Once this is done we implement the GUI,

incorporating al l of the elements that we require.

Improving Magic 8 Ball
Now we have the basic program working, we can

look in to making a few enhancements. At

present if you do not type in anything or you type

in a sequence of numbers you sti l l get a

response, which clearly isn't very helpful . We can

modify the response() function in our program

to take account of this. I have added code to

check if what the user enters is actual ly text.

However using the function isalpha() doesn't

work here as it seems to detect the spaces in

your question and throws up an error. To get

round this I did something sl ightly different:

def response():

msg = "error : must be a

text value"

i = circletext.get()

y = i.isdigit()

q_length = len(i.get())

if y == True or q_length == 0:

circletext.insert(0,(msg))

else:

response_phrase =

random.choice(RESPONSES)

clear prev output

circletext2.delete(0, END)

insert response

circletext2.insert(0,str(

response_phrase))

Here, we detect if the text in the text box is

numeric with i.isdigit() and if it is zero

characters in length with len(i.get()). I f either

is true then we display an error: the text entered

(or not) is clearly not a question.

Lastly, a suggestion for further improvement:

how would you provide a function for the user to

trigger an action to clear both the input and

output boxes? This is but one of several ways in

which the program can be improved and I

encourage you to use this article as the basis for

your own inventiveness.

Paul can be found at: http://www.zleap.net

http://www.zleap.net

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Have Your Say...
The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every ski l l level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1 . Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

PPRRIINNTT EEDDIITTIIOONN AAVVAAIILLAABBLLEE
WWOORRLLDDWWIIDDEE

The MagPi is avai lable for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly avai lable for purchase at the fol lowing Raspberry Pi
retai lers.. .

Americas EMEA AsiaPac

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

