
IISSSSUUEE 2233 -- MMAAYY 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGeett pprriinntteedd ccooppiieess aatt

tthheemmaaggppii..ccoomm

HHiigghh AAllttiittuuddee MMeeaassuurriinngg

RReeaall WWoorrlldd MMiinneeccrraafftt

BBrriicckkPPii aanndd SSccrraattcchh

XXMMPPPP CChhaatt SSeerrvveerr

LLiinnuuxx TTooooll SShheedd

11--WWiirree SSeennssoorrss

GGrroovveePPii

BIG
BIRTHDAY

COMPETITION
Win more than

£2,000
ofgoodies!

SSOONNIICC PPII 22..00
GGeett YYoouurr GGrroooovvee OOnn

Ash Stone - Chief Editor / Administration / Layout

W.H. Bell - Issue Editor / Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout / Testing / Proof Reading

Matt Judge - Website / Administration

Aaron Shaw - Layout

The MagPi Team

Nick Hitch - Admin

Colin Deady - Layout / Testing / Proof Reading

Tim Cox - Testing / Proof Reading

Claire Price - Layout / Proof Reading

Chris Stag - Testing

2

23

Welcome to Issue 23 of The MagPi magazine.

I t’s party time here at The MagPi towers, celebrating our second birthday! To mark this milestone, The
MagPi is pleased to provide another massive chance to get your hands on some fantastic Raspberry Pi
goodies, with over £2000 worth of tasty treats for our readers to win! Thank you to al l our sponsors who
have kindly given towards this massive col lection of prizes. See pages 1 8-1 9 for more information.

This month you’ l l find us in the club with Sonic Pi. The MagPi has an exclusive of Samuel Aaron's
brand new release of Sonic Pi v2.0 and how it is aiding bui ld the underground music movement of Live
Coding. Samuel describes what is new to v2.0 along with some basics to get you up and mixing in no
time.

Jacob Marsh from ModMyPi is back with another great tutorial on physical computing, this month
describing how to use 1 -Wire temperature sensors. We look at how to bui ld your own XMPP chat
server in Gianluca’s Chat Room article, then Bernhard Suter provides the next article in our Linux tool
shed series where he describes the bash shel l .

Michael Petersen begins his two-part series on using the Raspberry Pi to study atmospheric pol lution.
In this article he introduces us to the main subsystems involved in the multi-sensor array used in the
research balloons which are sent into the lower stratosphere of Utah. We also take a look at stackable
hardware with Sai Yamanoor's article about GrovePi.

Our very own Wil l iam Bell has been working overtime this month with no less than three articles. First,
he shows how to interface BrickPi with Scatch, then he describes how to bring Minecraft to the real
world and final ly the C++ Cache series makes a welcome return with an explanation of classes.

Why not head over to our Facebook page
http://www.facebook.com/MagPiMagazine and let
us know your favourite article over the last two
years, or even what you want to read about over the
next 1 2 months!

Enjoy.
Chief Editor of The MagPi

http://www.facebook.com/MagPiMagazine

3

4 STUDYING ATMOSPHERIC POLLUTION WITH A MULTI-SENSOR ARRAY
Part 1 : Introduction to the main subsystems

8
Stackable hardware extension board

GROVEPI: ADDING GROVE SENSOR MODULES

Part 3: Scratch interface with RpiScratchIO
1 2 BRICKPI

1 8
Over £2000 of prizes to be won in our second anniversary competition
BIG BIRTHDAY COMPETITION

20
Part 2: Interfacing Minecraft with PiFace Digital
MINECRAFT PI EDITION

34
Turn your Raspberry Pi into an XMPP chat server

CHAT ROOM

PHYSICAL COMPUTING
Part 2: Using 1 -Wire temperature sensors

26

42
Cambridge UK, North Staffordshire UK, Cardiff UK, San Mateo CA USA, Bath UK
THIS MONTH'S EVENTS GUIDE

44
Part 2: Discover new samples, synths, studio effects and Live Coding
SONICPI: GET YOUR GROOVE ON!

Part 5: Classes
30 C++ CACHE

38
Part 2: Tales from the Linux tool shed - don't bash the shel l

LINUX COMMANDS

48
Have your say about The MagPi
FEEDBACK

http://www.themagpi.com

ContentsContentsContents

http://www.themagpi.com

4

SKILL LEVEL : ADVANCED

Michael Petersen

Guest Writer

STUDYING ATMOSPHERIC POLLUTION
A Multi-Sensor Array for Atmospheric Science

Part 1 : Introduction to the multi-sensor

array subsystems

This two part series describes the design and

construction of a Multi-Sensor Array (MSA) for

studying atmospheric pol lution in an urbanised

mountain basin; specifical ly, the region above

Salt Lake City, Utah (USA). The MSA is flown on

research balloons by HARBOR, an

undergraduate research group located at Weber

State University in Ogden, Utah. The MSA

produces a column of measurements from

ground level (approx. 1 km above sea level, ASL)

to the lower stratosphere (approx. 35km ASL).

During fl ight, the system is exposed to pressures

as low as 0.75 mmHg, where heat exchange

becomes difficult even at temperatures of -50°C.

Jet stream winds can exceed speeds of

200km/h, applying punishing shock and vibration

forces to our electronic equipment. In this

extreme environment, the MSA must continue to

gather scientific data for a minimum of 4 hours.

The first part of this series focuses on the

hardware design of the MSA system. Part 2 wil l

describe how the software was designed and

implemented.

Theory of operation

The MSA is a data logging computer with a

standard set of bui lt-in sensors and an expanded

set of inputs to al low guest packages to be

connected. External devices such as LEDs,

buzzers, pumps, and heaters are control led via

existing GPIO pins. The MSA is comprised of six

major subsystems:

1 . Raspberry Pi (Version 1 - Model B)

2. System Interface Daughterboard

3. External Sensor Board

4. External Controls and Indicators

5. Power Supply

6. Enclosures

The Raspberry Pi serves as the primary platform

for the MSA system. I t monitors inputs,

communicates with sensors, processes and

stores fl ight data, and controls LEDs, motors,

and heaters.

5

System Interface Daugherboard

The System Interface Daughterboard (SID) l inks

the Raspberry Pi to everything else in the

system. I t also provides regulated power. The

SID is where analogue and digital sensors are

mounted or connected. I t is equipped with the

fol lowing components:

The sensors are used to calibrate data and help

el iminate bad data which may have been

recorded during an event; such as an impact,

extreme temperature, or high humidity. Al l

sensors communicate over the avai lable I2C

bus, with analogue sensors routed to an I2C

capable ADC.

There are two primary sensor circuits bui lt into

the SID. The first is a fl ight dynamic circuit which

consists of an I2C accelerometer/gyroscope

sensor and magnetometer.

The second is an environmental circuit

composed of temperature, humidity, and

pressure sensors.

The ADC can support up to sixteen single-ended

analogue sensors, not including an internal

temperature sensor. The I2C bus can support

many more devices.

We designed our circuit boards using a free

version of the Eagle PCB Design Software by

CadSoft. We manufactured the boards in-house

using commercial ly avai lable chemicals and

photosensitive PCBs. The top view of a

completed SID board is shown above. The

assembled board mounts to the Raspberry Pi via

the 2x1 3 pin header.

External sensors

The external sensor board consists of a TMP1 1 2

temperature sensor and an HIH5030 humidity

sensor mounted to a small PCB embedded in the

exterior wall of the external enclosure and

connected with a short harness.

External controls and indicators

External controls and indicators al low the user to

power up and shutdown the MSA from outside

its insulated enclosure. LEDs and buzzers al low

the user to know the status of the MSA, whether

it is in standby or data logging mode, and also

alerts unaware people on the ground when it is

descending near the surface. A pul l-pin starts a

mission timer to al low synchronisation of data

between various instruments at the start of a

fl ight. I t can also be re-inserted to save data fi les

and initiate a safe-shutdown.

* MPU6000 (6-axis accelerometer/gyroscope)

* HMC5883L (3-axis magnetometer)

* MPX21 02A (pressure sensor)

* MAX4208 (instrument amplifier)

* HIH5030 (humidity sensor)

* TMP1 1 2 (temperature sensor)

* COM-08720 (pushbutton)

* MIC2937A (3.3V regulator)

* MIC2937A (5.0V regulator)

* LTC2495 (1 6 Channel ADC)

* DS3231 M (Real-Time Clock)

Temperature

Sensor

Humidity

Sensor

Connector

(bottom)

6

Power supply

The power supply subsystem combines software

and hardware to provide power and initiate a

safe shutdown in the event of battery fai lure.

The hardware component is basical ly a 7.4V

LiPO battery and two linear voltage regulators

(5V and 3.3V). The 5V regulator supplies power

to the Raspberry Pi and has a couple hundred

mil l iamps avai lable for other devices. The 3.3V

regulator provides voltage for the I2C bus and all

of the onboard sensors.

Battery power is a precious commodity on

balloon fl ights, as capacity per gram quickly eats

into mass budgets. Federal regulations l imit

bal loon packages to 5.4kg, which must be

distributed amongst various fl ight packages;

including radio transmitters, cameras, and other

scientific instruments. The MSA system was

limited to just 408g which made battery selection

crucial .

The Raspberry Pi draws between 31 0mA and

390mA under normal operation; this includes the

current draw of the HDMI output chip and the

USB/Ethernet chips, which account for nearly

one half of the total current consumption. To

prolong battery l i fe during fl ight, these chips must

be disabled. The chips are disabled in the MSA

code by call ing two Linux commands.

The C code to shut down the HDMI video chip is:

system("/opt/vc/bin/tvservice -off");

The next l ine of code suspends the

USB/Ethernet control ler:

system("sh -c \"echo 1 >

/sys/devices/platform/bcm2708/usb/bussuspe

nd\" ");

Both of these chips are re-enabled when the

MSA is rebooted or powered up for the first time.

After the chips are disabled, the average current

draw of the Raspberry Pi drops to 1 80mA.

Factoring in the additional power consumption of

the sensors and ICs, a total of 1 4.42mA, and the

required battery l i fe of 4 hours, a minimum

battery capacity of 778mAh is required.

4hrs x (1 80mA + 1 4.42 mA) = 778mAh

We selected a 7.4V 1 1 00mAh LiPO battery,

which provides a modest amount of headroom

and only costs us 72g of our 408g mass budget.

Enclosures

An internal enclosure was designed to protect

the Raspberry Pi and SID from shock and

vibrations as the MSA makes its way through the

jet stream and upon landing. I t is made of high-

density foam wrapped in a l ightweight fabric. The

fabric acts as a hinge and allows the l id to wrap

around the sides, which are secured with

VELCRO® brand hook-and-loop fasterners.

7

The internal enclosure fits snuggly into a 30cm x

30cm x 30cm Styrofoam external enclosure. The

external enclosure provides structural rigidness

for the external controls, and insulates sensitive

components from extreme environmental

conditions.

Completely assembled, the whole unit weighs

406.9 grams. I t has been successful ly tested on

four fl ights and has reached an altitude of 34 km.

I t has survived landing in rugged desert terrain

and also a splashdown in a reservoir.

Coming up

In part 2 of this series, I wi l l discuss how the

MSA initiates the data logging program at

startup, communicates with some of the sensors,

stores data, manages sampling rates, interfaces

with the user, and responds to conditional

events; such as low battery voltage.

The code for the MSA is written completely in C

and is faci l i tated with the aid of the BCM 2835 C

library, maintained by Mike McCauley at

http://www.airspayce.com. The code also takes

advantage of semaphores and paral lel

programming to create a timer without the use of

interrupts.

Acknowledgements

The fol lowing members contributed to the design

and construction of the MSA.

Electronics Engineering Students:

- Michael Petersen

- J. Wesley Mahurin

- Jenifer Stoddard

Dr. John E. Sohl: Director of HARBOR and

Professor of Physics at WSU

Dr. Fon Brown: Mentor and Professor of

Electronics Engineering at WSU

Development of the MSA was funded in part by

the Val A. Browning Foundation, the Ralph Nye

Charitable Foundation, the Weber State

University Office of Undergraduate Research,

and the Utah Chapter of the AIAA. HARBOR

would l ike to give special thanks to Al Rydman

for his hospital i ty and for making the Duchesne

Municipal Airport avai lable to us to launch our

system.

Useful links

CadSoft EAGLE PCB Design Software:

http://www.cadsoftusa.com/eagle-pcb-design-

software

BCM 2835 C library:

http://airspayce.com/mikem/bcm2835/

HARBOR home page:

http://planet.weber.edu/harbor/

http://www.cadsoftusa.com/eagle-pcb-design-software
http://www.airspayce.com
http://airspayce.com/mikem/bcm2835/
http://planet.weber.edu/harbor/

8

SKILL LEVEL : INTERMEDIATE

Sai Yamanoor

MagPi writer

GROVEPI
Adding grove sensor modules

Stackable hardware
extension board

Introduction

The GrovePi is a an extension board that al lows

additional hardware to be stacked on top of the

Raspberry Pi.

http://www.dexterindustries.com/GrovePi/

The board simplifies the art of electronic circuit

hacking, since it comes with an onboard

microcontrol ler. The extension board enables

interfacing the Raspberry Pi to an ecosystem of

modules including sensors, actuators and

displays, through a set of standard connectors.

The GrovePi comes with analogue inputs, digital

input/output (I /O) and I2C interfaces. The

modules are cal led “electronic bricks”. The

board is based on an Atmega328 microcontrol ler

that comes preloaded with the firmware required

to communicate with the Raspberry Pi. I t also

possible to flash the onboard microcontrol ler with

your own firmware for a project. The GrovePi

communicates with the Raspberry Pi using the

I2C interface. Since the Grove Pi is stackable, it

is possible to make use of other GPIO pins, as

well as other devices that are connected to the

Raspberry Pi I2C bus.

Getting Started

The GrovePi l ibrary can be downloaded from:

https://github.com/DexterInd/GrovePi

The dependencies for the GrovePi can be

instal led using a script avai lable in the ‘Script’

directory of the GrovePi l ibrary and the l ibrary

could be used upon reboot.

This article discusses some simple Python3

examples that can be used with the GrovePi.

The example code discussed is avai lable at:

https://github.com/yamanoorsai/GrovePi_Test

https://github.com/DexterInd/GrovePi
https://github.com/yamanoorsai/GrovePi_Test

9

Blinking LED example

To test that the GrovePi is working correctly, a

simple LED example can be used. The GrovePi

is control led from the Raspberry Pi using Python

and the GrovePi module. To cause the LED on

the GrovePi to bl ink:

import time

import grovepi

grovepi.pinMode(7,"OUTPUT")

time.sleep(1)

while True:

try:

grovepi.digitalWrite(7,1)

time.sleep(1)

grovepi.digitalWrite(7,0)

time.sleep(1)

except IOError:

print("Error")

At the top of the program, the GrovePi module is

imported. Then pin 7 is configured as an output

pin.

grovepi.pinMode(7,"OUTPUT")

Within the loop, the digitalWrite function is

used to turn the LED on and off. The program

waits for one second after turning the LED on

and one second after turning the LED off.

The GrovePi function naming scheme is simi lar

to the Arduino l ibraries and WiringPi.

Data-logger application

The GrovePi can be used to measure the air

qual ity and log the associated data. This is

achieved using an air qual ity sensor module and

a real time clock (RTC) module,

tk = Tk()

Add a canvas area ready for drawing on

SensorButton = Button(tk,text="Update Air

Quality Value",command= Analog)

SensorButton.pack()

#Add an exit button

btn = Button(tk, text="Exit",

command=terminate)

btn.pack()

Label1 = Label(tk)

Label1.pack()

Label1.configure(text=("Sensor Value = %d")%

grovepi.analogRead(0))

Label2 = Label(tk)

Label2.pack()

In this example, the GrovePi is used to read the

current time from the RTC module and display it

in a desktop window. The sensor value and

associated readout time is written into a text fi le.

This program makes use of the Tkinter graphical

user interface (GUI) toolkit, to implement a

simple user interface. A basic guide to using

Tkinter from Python is given at:

http://pihw.wordpress.com/lessons/rgb-led-

lesson-5-creating-a-graphical-user-interface/

The Tkinter object is initial ised and two button

widgets are added. One button widget cal led

SensorButton is used to record the analog

value from the air qual ity sensor along with the

time read from the RTC module. A cal lback

http://pihw.wordpress.com/lessons/rgb-led-lesson-5-creating-a-graphical-user-interface/

10

function cal led Analog is registered to react to

SensorButton changes.

def Analog():

global Label1

try:

Value = (int)(grovepi.analogRead(0))

DisplayTime = grovepi.rtc_getTime()

Label1.configure(text=("Sensor value =

%d")% Value)

text_file = open("Output.txt", "a")

text_file.write("%02d:%02d:%02d Sensor

value:%d\n" % (DisplayTime[1],

DisplayTime[2],DisplayTime[3],Value))

text_file.close()

except IOError:

pass

The other button cal led Exit terminates the

application and destroys the window.

def terminate():

global tk

tk.destroy()

We use the Label widget to update the time

using the RTC module.

def Display_Time():

global Label2,DisplayTime

try:

DisplayTime = grovepi.rtc_getTime()

Label2.configure(text=("%02d:%02d:%02d")

%(DisplayTime[1],DisplayTime[2],

DisplayTime[3]))

tk.after(1000,Display_Time)

except Exception,e:

print 'Exception was thrown', str(e)

print "Error"

tk.after(1000,Display_Time)

The function cal l rtc_getTime() returns an 8

byte array, containing the date and time

information. This is set as the text in the Label

widget. The text is updated every second, using

the tk widgets method after.

tk.after(1000,Display_Time)

Putting al l the code together, the GUI looks

something l ike this:

The application logs data as fol lows:

06:09:56 Sensor value: 260

Conclusion

The GrovePi is a board that al lows GrovePi

sensors to be easi ly interface with the Raspberry

Pi. The Grove Pi board costs 24USD. There

are different grove modules, avai lable from

prices as low as 5USD (a relay module) to

50USD (an EMG detector used for detection of

signals from skeletal muscles).

More examples for the Grove Pi are avai lable at:

http://www.dexterindustries.com/GrovePi/project

s-for-the-raspberry-pi/

http://www.dexterindustries.com/GrovePi/projects-for-the-raspberry-pi/

http://www.dexterindustries.com

1 2

SKILL LEVEL : INTERMEDIATE

W. H. Bell

MagPi Writer

LEGO NXT INTERFACE
Plug in LEGO® sensors and motors

BrickPi Scratch interface with
RpiScratchIO - part 3

Introduction

The BrickPi provides an interface between LEGO®

MINDSTORMS® motors and sensors and the

Raspberry Pi. The board has five sensor ports and

four motor ports. The Raspberry Pi communicates

with the BrickPi over the serial port (UART), which is

avai lable via pins 8 and 1 0 of the 26 pin header on

the Raspberry Pi:

http://el inux.org/RPi_Low-level_peripherals

The BrickPi is able to read both the sensors and the

motor encoder values, providing a simple interface to

a range of MINDSTORMS® based projects. More

detai ls of the BrickPi are given in Issues 1 7 and 1 8 of

The MagPi.

A local school decided to buy several BrickPi boards,

for their engineering course. After a few tests, it was

clear that a new Scratch driver was needed to al low

the BrickPi to be used within the course material . To

al low other Raspberry Pi GPIO connections to be

used and provide easy configuration of the BrickPi,

RpiScratchIO was chosen as the basis of the Scratch

interface. More information on RpiScratchIO can be

found in Issues 20 and 22 of The MagPi and at:

https://pypi.python.org/pypi/RpiScratchIO/

Installation & configuration

These instal lation instructions start from the basic

Raspbian image that can be downloaded from the

Raspberry Pi web site:

http://www.raspberrypi.org/downloads/

The BrickPi Python and Scratch interfaces are

avai lable as a Python module. To instal l both

interfaces, together with their dependencies, open a

terminal window and type:

sudo apt-get install -y python-serial \

python-setuptools python-dev

easy_install pip

pip install BrickPi

To use the serial port to communicate with the

BrickPi, i t has to be avai lable as an input/output (I /O)

connection. To al low a connection using the serial

bus, the Raspbian configuration needs to be changed

sl ightly. Type:

sudo -s

Then use the nano editor to edit

/boot/config. txt :

nano /boot/config. txt

https://pypi.python.org/pypi/RpiScratchIO/
http://www.raspberrypi.org/downloads/
http://elinux.org/RPi_Low-level_peripherals

1 3

Go the end of the fi le and add:

init_uart_clock=32000000

Then save this fi le and open /etc/inittab . Find

T0: 23

and put a # character in front, to comment it out.

Then save it. Next, open /boot/cmdline. txt and

remove

console=ttyAMA0, 115200 kgdboc=ttyAMA0, 115200

and save the fi le. Now reboot the Raspberry Pi:

reboot

Building the tank

Follow the instructions given at,

http://www.dexterindustries.com/BrickPi/projects/

tank/

to bui ld a tracked vehicle. Then put the BrickPi on

top and connect the right motor to BrickPi port MA and

the left motor to BrickPi port MB . Final ly, add a

forward-facing ultrasonic sensor and connect it to

BrickPi sensor port S1. The BrickPi port label l ing is

given in The MagPi Issue 1 8 article on the BrickPi.

Human controlled tank

The BrickPi has to be appropriately configured for

each different LEGO® sensor. Create a new fi le

cal led tank. cfg that contains:

Now open Scratch and enable remote sensor

connections, by selecting the "Sensing" palette and

right cl icking on "sensor value" at the bottom of the

tool palette. (For the current Raspbian version of

Scratch, the remote sensor connections need to be

disabled and then re-enabled.) Now start

RpiScratchIO by typing:

RpiScratchIO tank. cfg

This creates new Scratch sensors with names within

the ranges LEGO: 0-LEGO: 3 , LEGO: 10-LEGO: 13

and LEGO: 20-LEGO: 23 , where LEGO: 0-LEGO: 3

are the sensor ports S1-S4, LEGO: 10-LEGO: 13

correspond to the values written to the four motor

ports MA-MB and LEGO: 20-LEGO: 23 are the motor

encoders for MA-MB . The sensor (S1-S4) and the

motor encoder (MA-MB) values can be updated in

Scratch by broadcasting read commands. For

example,

LEGO: read: 0

transfers the current S1 value into the Scratch sensor

LEGO: 0. The motor speed can be changed by

broadcasting a write command:

LEGO: write: 10, 255

where this sets the motor connected to MA to run

forwards at ful l speed. To stop the motor attached to

MA, use Scratch to broadcast:

LEGO: write: 10, 0

I f a sensor channel is used that has not been

[DeviceTypes]

LEGO = import BrickPi; from BrickPi. BrickPiScratch import BrickPiScratch; BrickPiScratch()

[DeviceConnections]

LEGO = UART0

[BrickPi]

S1 = ULTRASONIC_CONT

MA =

MB =

http://www.dexterindustries.com/BrickPi/projects/tank/

1 4

configured in the configuration fi le, then a warning is

reported. To update the sensors that are active in

Scratch, exit RpiScratchIO by typing CTRL-C, edit

the RpiScratchIO configuration fi le and then restart

RpiScratchIO as before.

The BrickPiScratch interface can be easi ly used to

control the position of the tank, using the keyboard.

In this example, a simple top view of a tank was used

as the main sprite.

Then two sprites were made, one for each track of

the vehicle. The main sprite was then l inked to the

ultrasonic sensor and each track was linked to a

motor. The main sprite program,

sends a read command to read the ultrasonic

sensors, waits for half a second and then prints the

value of the sensor. The value of the sensor is also

used to change the costume of the main sprite, to

indicate if there is an object close by.

The program for the left motor,

sets the motor to run forward when the a key is held

down. When the key is released, the motor stops. To

make the motor go backwards, the z key should be

held down. When the motor is running forwards or

backwards, the track sprite colour changes to show

that the motor is running. The right track program is

the same, but with the d and x keys and the motor

channel 1 0.

Data acquisition & limits

To understand the l imits of the Scratch driver, i t is

helpful to know what is happening within the driver

and the BrickPi itself. The BrickPi Scratch diver is

written in Python and communicates between

Scratch and the BrickPi. I f the Scratch driver sent the

BrickPi a single motor control ler command, the

BrickPi would run the associated motor for about one

second and then stop. This design choice was make

in the Brick itself to prevent run-away robots. To

make Scratch programs more efficient and simpler,

the Scratch driver starts a data acquisition loop with

the BrickPi that runs every tenth of a second. This

loop sends the current motor values to the BrickPi

and retrieves the current sensor values for the

1 5

sensors that are enabled in the configuration fi le. The

current values for the sensors and motor encoders

are stored in the BrickPi Scratch driver. In this

manner, the Scratch code can send a single value to

the scratch driver and see quick updates of motor

values.

Scratch running on a Raspberry Pi cannot receive

sensor updates faster than approximately half a

second. While requesting a value and then receiving

it completely decouples Scratch from the fast data

acquisition loop inside the Scratch driver, i t also uses

more processor time. This is a good choice for

monitoring long term changes, but does not work well

for autonomous projects.

To reach the l imit of Scratch I/O and performance,

the BrickPi Scratch driver can be used to send

regular sensor updates to Scratch. This has two

implications: (1) reduced number of broadcast

messages and (2) the abi l i ty to trigger Scratch from

the automatic readout. Both of these changes ensure

that the Scratch communication is as efficient as

possible.

Autonomous tank

A human control led vehicle is amusing, but a true

robot should be able to function on its own. To make

decisions, the sensor updates within Scratch have to

be as fast as possible. This can be achieved by

turning on the automatic update mechanism in the

BrickPi Scratch driver. Copy the tank. cfg fi le and

rename it as autoTank. cfg . Then change

BrickPiScratch()

to

BrickPiScratch(0, "s")

The number zero is the period of the automatic

update in units of tenths of a second, where zero

disables the automatic update of sensor values. The

value "s" configures al l active sensors to be

automatical ly updated. Other options are given at:

https://pypi.python.org/pypi/BrickPi

Close the previous Scratch window and open a new

one. Set up the remote sensor connections as

before. Then type,

RpiScratchIO autoTank. cfg

This time, the Scratch setup contains only one sprite.

The program for the sprite is given below and on the

next page.

When the green flag is cl icked, the tank changes its

costume to indicate that the automatic sensor update

loop is running. The local ("For this sprite only")

variable US and global ("For al l sprites") variables

LEGO: 10 and LEGO: 11 are al l set to zero. Then the

config: period, 5 command is sent to start the

automatic updates, which then run once every half a

second.

https://pypi.python.org/pypi/BrickPi
https://pypi.python.org/pypi/BrickPi

Each time the sensors are automatical ly updated, a

LEGO: trig message is sent to Scratch. The

LEGO: trig message is used to run the three

sections that fol low, where the first section stores the

sensor value in the US variable and the other two

sections control the two motors. When the LEGO: 10

or LEGO: 11 values are updated, they are

automatical ly sent to the BrickPi channels MA and MB

respectively.

The last section is only run when the q key is pressed

on the keyboard, which stops the automatic updates.

The program then waits, in case one motor command

is sti l l being processed. Then the costume is set

back to normal and both motors are stopped.

Try pointing the robot at a smooth wall and cl icking

on the green flag. When the wall is far away, the

motors wil l run at high speed. Then the robot wil l

slow down and final ly stop.

LEGO® is a trademark of the LEGO Group of companies

which does not sponsor, authorize or endorse this site

http://www.dawnrobotics.co.uk

http://www.ed-venture.biz

1 8

The MagPi has now reached its two year anniversary. With the
support of many contributors from across the globe we have seen a
wealth of interesting articles on our favourite tiny computer. To
celebrate our second year we have a very big birthday competition
for you al l to enter, and al l you have to do is answer the first five
multiple choice questions below. The last two questions are
optional, but we would love to hear your thoughts.

Enter at www.themagpi.com/birthday. Al l correct entries received
by June 1 st this year wil l be put into the prize draw, with the first 1 4
drawn winning a prize in the order l isted. Winners wil l be notified by
email and the winning names wil l be posted on The MagPi website.

Al l answers are to be found in The MagPi from issue 1 2 onwards.
Ful l terms are avai lable at: www.themagpi.com/birthday

The MagPi's Second Birthday Competition
Over £2,000 worth of prizes to be won!

Which game did we bring to Python written by Tim Hartnel l?
a) The Duke of Dragonfear
b) Stronghold of the Dwarven Lords
c) The Bannochburn Legacy

Questions

Q1

Q2

Q3

Q4

Q5

Q6

Q7

How many degrees north of the equator is the island of Curacao?
a) 1 2 degrees
b) 1 4 degrees
c) 1 8 degrees

Which pirate symbol features on the chest of the BrickPi LEGO® man in The MagPi?
a) Fl intlock pistols
b) Crossed cutlasses
c) Skul l and crossbones

Who was mentioned as having famously fl icked paint off the end of a paint brush onto canvas?
a) Jackson Pollock
b) Andy Warhol
c) Leonardo da Vinci

Who is Acorn's Elite commander?
a) Commander Devereaux
b) Commander Bluehair
c) Commander Jameson

[Optional] What articles would you l ike to see in The MagPi over the next year?

[Opional] What do you use your Raspberry Pi(s) for?

http://www.themagpi.com/birthday
http://www.themagpi.com/birthday

1 9

Sponsors

The MagPi Volumes 1 & 2, IO Pi 32, ADC Pi, RasPiO Breakout Pro, Bare Conductive House Kit, Wolfson Audio
Card, BrickPi Starter Kit, GrovePi, Outdoor PiCE and weather shield, 1 year domain name and hosting for your
Raspberry Pi Project, Laika Explorer Inventor Kit, RasPi Connect voucher, $1 00 Open Electrons voucher,
Panavise 201 , 31 2 & 371 , UPiS Advanced with case and PiCoolFan, LEDBorg, PicoBorg, XLoBorg, TriBorg,
Raspberry Pi Cookbook for Python Programmers & hardware kit, Adafruit Pi TFT & PiBow TFT case, Pi Supply
Switch, RTK Motor control ler board, Sweetbox with heatsinks ScorPi & CAMlot, Raspberry Pi Projects book,
Adventures in Raspberry Pi book, FLIRC & remote, Raspberry Pi Mug Coaster.

For the complete list visit www.themagpi.com/birthday

1 st

2nd

3rd

4th

Prizes

IO Pi 32, ADC Pi, Pi TFT, RasPiO Breakout Board, Bare Conductive House Kit, Wolfson Audio Card, Pi UPS, 1
year domain name and hosting for your Raspberry Pi project, Kano computer kit (eta July) , RasPiConnect
voucher, $75 Open Electrons voucher, LEDBorg, PicoBorg, Pi Supply Switch, Plusberry Pi Case (when
avai lable), Sweetbox with heatsinks & ScorPi, Raspberry Pi Projects for Dummies book, WiFi adaptor, Pibrel la.

Serial Pi RS232, RasPiO Port Reference Board, Bare Conductive Card Kit, Wolfson Audio Card, Pi UPS,
RasPiConnect voucher, $75 Open Electrons voucher, LEDBorg, Pi Crust, Pi Supply Switch, Plusberry Pi Case
(when avai lable), ScorPi & CAMlot, Raspberry Pi for Dummies book, Tiny breadboard kit.

Serial Pi RS232, RasPiO Port Reference Board, Bare Conductive Card Kit, Pi RasPiConnect voucher, $50 Open
Electrons voucher, UPiS Advanced with case & PiCoolFan, Pi Crust, Pi Supply Switch, Short Crust Case, Bright
Pi, Plusberry Pi Case (when avai lable), Sweetbox with heatsinks, Learning Python with Raspberry Pi book.

http://www.wiley.com
http://learn.adafruit.com/category/raspberry-pi
http://shop.pimoroni.com
http://www.bareconductive.com
http://www.abelectronics.co.uk
http://www.graspinghand.com
http://www.thepihut.com
http://www.cpc.co.uk
http://www.piborg.com
http://www.pi-supply.com
http://www.pihardware.com
http://www.ethicalwebsites.com
http://www.dexterindustries.com
http://ed-venture.biz
http://www.piups.net
http://www.pimodules.com
http://www.milocreek.com
http://www.kitronik.co.uk
http://www.panavise.com
http://www.kano.me
http://www.raspi.tv
http://www.ryanteck.ltd.uk
http://www.openelectrons.com
http://www.themagpi.com/birthday

20

SKILL LEVEL : INTERMEDIATE

W. H. Bell

MagPi Writer

Interfacing Minecraft with
PiFace Digital

Minecraft is a very popular game that has more

recently been used as a teaching tool, to

encourage programming. The Raspberry Pi

version of Minecraft is avai lable for free. The

game is packaged with a Python application

programmer interface (API) , which al lows

interactions with players and blocks. An

introduction to this API was given in Issue 1 1 of

The MagPi. There are also additional teaching

resources, such as Craig Richardson’s "Python

Programming for Raspberry Pi" book.

The interaction with Minecraft via the Python API

is not l imited to just software. Input/output (I /O)

devices that are connected to a Raspberry Pi

can react to, or produce events in Minecraft.

This opens up a range of possibi l i ties. For

example, the garage door could open when the

Minecraft player goes into the garage or the

doorbel l could be connected to a Minecraft chat

message, etc. Since the Python API sends

commands to the Minecraft server process over

a network, the Raspberry Pi that is interacting

with the Minecraft session could be in the garden

monitoring the weather.

In this article, the Minecraft API is used with the

PiFace Digital expansion board to create some

traps around the selected player.

PiFace Digital

The PiFace Digital expansion board provides a

safe way to connect digital devices to the

Raspberry Pi, via buffered screw terminals.

The board includes two relays that are suitable

for low voltage applications, four switches, eight

digital inputs, eight open col lector outputs and

eight LED indicators. The Raspberry Pi

communicates with the PiFace via the SPI bus

on the 26 pin header. There are Python and

Scratch interfaces that are packaged for easy

instal lation using the Debian package manager.

More information on the PiFace can be found at:

http://www.piface.org.uk/products/piface_digital/

http://www.piface.org.uk/products/piface_digital/

21

PiFace Python interface

Starting from a recent Raspbian image, make

sure that the Raspbian instal lation is up to date:

sudo apt-get update
sudo apt-get upgrade -y

Then start the raspi-config,

sudo raspi-config

Select the "Advanced Options" and choose

"SPI". Then set the value to "Yes", select "Ok"

and "Finish". (The Python l ibrary python-

pifacedigital io is already instal led in the latest

Raspbian image configuration.) PiFace example

Python programs can be found in:

/usr/share/doc/python-pifacedigitalio/examples/

Installing Minecraft

I f Minecraft is not already instal led, then type:

cd $HOME
wget https: //s3. amazonaws. com/assets. minecraft
. net/pi/minecraft-pi-0. 1. 1. tar. gz
tar zxvf minecraft-pi-0. 1. 1. tar. gz

Rather than copying the API fi les, the directory

where the Python API is can be added to the

PYTHONPATH variable. Use nano to edit the

.bashrc fi le:

nano ~/. bashrc

Go to the end of the fi le and add:

For Minecraft
MCPI_PY=$HOME/mcpi/api/python
if [[-z $PYTHONPATH]] ; then
export PYTHONPATH=$MCPI_PY

elif [[$PYTHONPATH ! = *"$MCPI_PY"*]] ; then
export PYTHONPATH="$PYTHONPATH: $MCPI_PY"

fi
unset MCPI_PY

Then save the fi le.

Minecraft traps

There are many actions that could be triggered

by hardware input changes. In this article, some

dramatic events that are centred on a given

player are used.

Create a new fi le cal led McTraps.py in the

present working directory, add the Python given

at the bottom of this page and save the fi le. Then

open a second fi le cal led mcControl.py and add

the Python found on the next page.

import mcpi
from mcpi. block import *
import time

def sandTrap(mc):
pos = mc. player. getTilePos()
mc. setBlocks(pos. x-10, pos. y+15, pos. z-10, pos. x+10, pos. y+18, pos. z+10, SAND)
mc. postToChat("Welcome to the beach! ")

def volcanoTrap(mc):
pos = mc. player. getTilePos()
mc. postToChat("Warning. . volcano! ")
time. sleep(1)
mc. setBlocks(pos. x, pos. y-50, pos. z, pos. x, pos. y-1, pos. z, LAVA)
time. sleep(1)
mc. setBlocks(pos. x-2, pos. y, pos. z-2, pos. x+2, pos. y+2, pos. z+2, LAVA)
mc. postToChat("A bit too hot! ")

def holeTrap(mc):
pos = mc. player. getTilePos()
mc. postToChat("Watch your feet! ")
time. sleep(1)
mc. setBlocks(pos. x-2, pos. y-40, pos. z-2, pos. x+2, pos. y, pos. z+2, AIR)

22

#! /usr/bin/env python
import mcpi
from mcpi. minecraft import Minecraft
import pifacedigitalio
from McTraps import *
import sys, time

class McControl:
def __init__(self, ips):

self. ips = []
self. ips += ips

Open connections with the Minecraft sessions
self. connections={}
for ip in self. ips:

try:
#self. connections[ip] = Minecraft. create(ip)
self. connections[ip] = None

except:
print("ERROR: cannot connect to Minecraft on %s" % ip)
sys. exit(1)

Store the number of connections and initialise the current connection to be the first one
self. connectionNumber = 0
self. numberOfConnection = len(ips)

Setup an input event listener, one per switch on the PiFace
pifacedigital = pifacedigitalio. PiFaceDigital()
self. listener = pifacedigitalio. InputEventListener(chip=pifacedigital)
for i in range(4):

self. listener. register(i, pifacedigitalio. IODIR_ON, self. switchPressed)

def listen(self):
Start listening to the PiFace
self. listener. activate()
print(">> Listening to PiFace")

def shutdown(self):
Stop listening to the PiFace
self. listener. deactivate()
print(">> Listeners shutdown")

def nextConnection(self):
Change to the connection associated with the next IP in the list.
self. connectionNumber = self. connectionNumber + 1
if self. connectionNumber >= self. numberOfConnection:

self. connectionNumber = 0
print(">> Using connection to %s" % self. ips[self. connectionNumber])

def getConnection(self):
Return the connection associated with the selected IP
if not self. ips[self. connectionNumber] in self. connections. keys():

raise Exception("Error: no connection to %s" % self. ips[self. connectionNumber])
return self. connections[self. ips[self. connectionNumber]]

def switchPressed(self, event):
Handle switch press events:
(0) - If the first switch has been pressed, change to the next IP
if event. pin_num == 0:

self. nextConnection()
return None

Get the current Minecraft connection
mc = self. getConnection()

23

Set the mcControl.py fi le as executable,

chmod 755 mcControl. py

Then use a new terminal window to start

Minecraft, using the local Raspberry Pi:

cd mcpi
. /minecraft-pi

Once Minecraft is running and a world has been

created. Click on the tab key, to break the

window focus. Then select the original terminal

window and type:

. /mcControl. py

By default, the program uses the localhost. To

access one or more remote Minecraft games,

type:

. /mcControl. py 192. 168. 1. 20 192. 168. 1. 21

etc., where the IP addresses are the IP

addresses of the Raspberry Pis running

Minecraft. The IP address on a Raspberry Pi

can be found by typing

ifconfig

in a terminal window.

Once the mcControl.py program is running,

pressing switch 0 on the PiFace wil l cause the

program to change the connection used for the

tricks. This is useful, when more than one

Minecraft session is in the connection dictionary.

Buttons 1 , 2 and 3, run the sandTrap,

volcanoTrap and holeTrap functions

respectively.

To prevent a lot of CPU being used, the

McControl class creates a InputEventListener

object. This l istener is then used to associate the

switchPressed function with one of the four

switches being pressed. Once the

l istener.activate() function has been called, the

program continues to l isten for PiFace switch

changes unti l i t is closed with CTRL-C.

(1-3) - Use the switch number to decide which trap to run
if event. pin_num == 1:

print(">> Sand trap")
sandTrap(mc)

elif event. pin_num == 2:
print(">> Volcano trap")
volcanoTrap(mc)

elif event. pin_num == 3:
print(">> Hole trap")
holeTrap(mc)

else:
raise Exception("ERROR: pin number is out of range. ")

if __name__ == "__main__":
If no command line options are provide, assume that the localhost is running Minecraft
ips = []
if len(sys. argv) == 1:

ips += ["localhost"]
else:

ips += sys. argv[1:]

Start the MineCraft connections and PiFace listeners.
The listeners are shutdown went the program exits.
mcControl = McControl(ips)
try:

mcControl. listen()
while(1):

time. sleep(1000)
except KeyboardInterrupt:

mcControl. shutdown()

http://www.panavise.com

http://www.element14.com/raspberrypi

2026

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

GPIO Sensing: Using 1 -Wire
temperature sensors - Part 2

1 -Wire sensors

In previous tutorials we’ve outl ined the

integration of simple sensors and switches with

the Raspberry Pi. These components have had a

simple on/off or high/low output, which is sensed

by the Raspberry Pi. Our PIR movement sensor

tutorial in Issue 21 , for example, simply says

“Yes, I ’ve detected movement”.

So, what happens when we connect a more

advanced sensor and want to read more

complex data? In this tutorial we wil l connect a 1 -

Wire digital thermometer sensor and programme

our Raspberry Pi to read the output of the

temperature it senses!

In 1 -Wire sensors al l data is sent down one wire,

which makes it great for microcontrol lers and

computers, such as the Raspberry Pi, as it only

requires one GPIO pin for sensing. In addition to

this, most 1 -Wire sensors wil l come with a unique

serial code (more on this later) which means you

can connect multiple units without them

interfering with each other.

The sensor we’re going to use in this tutorial is

the Maxim DS1 8B20+ Programmable Resolution

1 -Wire Digital Thermometer.

The DS1 8B20+ has a

similar layout to transistors,

cal led the TO-92 package,

with three pins: GND, Data

(DQ) and 3.3V power l ine

(VDD) . You also need some

jumper wires, a breadboard

and a 4.7kΩ (or 1 0kΩ)

resistor.

The resistor in this setup is used as a 'pul l-up' for

the data-l ine, and should be connected between

the DQ and VDD l ine. I t ensures that the 1 -Wire

data l ine is at a defined logic level and l imits

interference from electrical noise if our pin was

left floating. We are also going to use GPIO 4

[Pin 7] as the driver pin for sensing the

thermometer output. This is the dedicated pin for

1 -Wire GPIO sensing.

Hooking it up

1 . Connect GPIO GND [Pin 6] on the Raspberry

Pi to the negative rai l on the breadboard.

2. Connect GPIO 3.3V [Pin 1] on the Raspberry

Pi to the positive rai l on the breadboard.

3. Plug the DS1 8B20+ into your breadboard,

https://www.modmypi.com/shop

27

ensuring that al l three pins are in different rows.

Famil iarise yourself with the pin layout, as it is

quite easy to hook it up backwards!

4. Connect DS1 8B20+ GND [Pin 1] to the

negative rai l of the breadboard.

5. Connect DS1 8B20+ VDD [Pin 3] to the positive

rai l of the breadboard.

6. Place your 4.7kΩ resistor between DS1 8B20+

DQ [Pin 2] and a free row on your breadboard.

7. Connect that free end of the 4.7kΩ resistor to

the positive rai l of the breadboard.

8. Final ly, connect DS1 8B20+ DQ [Pin 2] to

GPIO 4 [Pin 7] with a jumper wire.

That’s it! We are now ready for some

programming!

Programming

With a l ittle set up, the DS1 8B20+ can be read

directly from the command line without the need

for any Python programming. However, this

requires us to input a command every time we

want to know the temperature reading. In order

to introduce some concepts for 1 -Wire

interfacing, we wil l access it via the command

line first and then we wil l write a Python program

which wil l read the temperature automatical ly at

set time intervals.

The Raspberry Pi comes equipped with a range

of drivers for interfacing. However, it’s not

feasible to load every driver when the system

boots, as it increases the boot time significantly

and uses a considerable amount of system

resources for redundant processes. These

drivers are therefore stored as loadable modules

and the command modprobe is employed to boot

them into the Linux kernel when they’re required.

The fol lowing two commands load the 1 -Wire

and thermometer drivers on GPIO 4. At the

command line enter:

sudo modprobe w1-gpio

sudo modprobe w1-therm

We then need to change directory to our 1 -Wire

device folder and l ist the devices in order to

ensure that our thermometer has loaded

correctly. Enter:

cd /sys/bus/w1/devices

ls

In the device l ist, your sensor should be l isted as

a series of numbers and letters. In my case, the

device is registered as 28-000005e2fdc3. You

then need to access the sensor with the cd

command, replacing the serial number with that

from your own sensor. Enter:

cd 28-000005e2fdc3

The sensor periodical ly writes to the w1_slave

fi le. We can use the cat command to read it:

28

cat w1_slave

This yields the fol lowing two lines of text, with the

output t showing the temperature in mil l i -

degrees Celsius. Divide this number by 1 000 to

get the temperature in degrees, e.g. the

temperature reading we’ve received is 23.1 25

degrees Celsius.

72 01 4b 46 7f ff 0e 10 57 : crc=57 YES

72 01 4b 46 7f ff 0e 10 57 t=23125

In terms of reading from the sensor, this is al l

that’s required from the command line. Try

holding onto the thermometer for a few seconds

and then take another reading. Spot the

increase? With these commands in mind, we can

now write a Python program to output our

temperature data automatical ly.

Python program

Our first step is to import the required modules.

The os module al lows us to enable our 1 -Wire

drivers and interface with the sensor. The time

module al lows the Raspberry Pi to define time,

and enables the use of time periods in our code.

import os

import time

We then need to load our drivers:

os. system(' modprobe w1-gpio')

os. system(' modprobe w1-therm')

The next step is to define the sensor’s output fi le

(the w1_slave fi le) as defined above. Remember

to uti l ise your own temperature sensor’s serial

code!

temp_sensor = ' /sys/bus/w1/devices/28-000005e2

fdc3/w1_slave'

We then need to define a variable for our raw

temperature value, temp_raw; the two lines

output by the sensor, as demonstrated by the

command line example. We could simply print

this statement now, however we are going to

process it into something more usable. To do this

we open, read, record and then close the

temp_sensor fi le. We use the return function

here, in order to recal l this data at a later stage in

our code.

def temp_raw():

f = open(temp_sensor, ' r')

lines = f. readlines()

f. close()

return lines

First, we check our variable from the previous

function for any errors. I f you study our original

output, as shown in the command line example,

we get two lines of output code. The first l ine was

"72 01 4b 46 7f ff 0e 1 0 57 : crc=57 YES". We

strip this l ine, except for the last three characters,

and check for the “YES” signal, which indicates

a successful temperature reading from the

sensor. In Python, not-equal is defined as “! =”,

so here we are saying that whi le the reading

does not equal "YES", sleep for 0.2s and repeat.

def read_temp():

lines = temp_raw()

while lines[0] . strip()[-3:] ! = ' YES' :

time. sleep(0. 2)

lines = temp_raw()

Once a YES signal has been received, we

proceed to our second line of output code. In our

example this was "72 01 4b 46 7f ff 0e 1 0 57

t=231 25". We find our temperature output “t=”,

check it for errors and strip the output of the “t=”

phrase to leave just the temperature data. Final ly

we run two calculations to give us the

temperature in Celsius and Fahrenheit.

temp_output = lines[1] . find(' t=')

if temp_output ! = -1:

temp_string = lines[1] . strip()[temp_output

+2:]

temp_c = float(temp_string) / 1000. 0

temp_f = temp_c * 9. 0 / 5. 0 + 32. 0

return temp_c, temp_f

29

Final ly, we loop our process and tel l i t to output

our temperature data every 1 second.

while True:

print(read_temp())

time. sleep(1)

That’s our code! A screenshot of the complete

program is shown below. Save your program and

run it to display the temperature output, as

shown on the right.

Multiple sensors

DS1 8B20+ sensors can be connected in paral lel

and accessed using their unique serial number.

Our Python example can be edited to access and

read from multiple sensors!

As always, the DS1 8B20+ sensor and all

components are avai lable separately or as part

of our workshop kit from the ModMyPi website

http://www.modmypi.com.

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com
http://www.modmypi.com

30

SKILL LEVEL : ADVANCED

W. H. Bell

MagPi Writer

5 - Classes

Welcome back to the C++ Cache. The subject of this month's article is the introduction of C++ classes.

Before continuing, it may be helpful to read previous C articles in Issues 3, 4, 5, 6, 9, 1 3 and 1 7, and

previous C++ articles in Issues 7, 8, 1 0 and 1 8.

Object-orientated programming

When programs become very large and there are many data structures associated with many different pieces of

a program, then it can be helpful to associate particular functions with particular data structures. In object-

orientated programming, the basic bui lding block of a program is an object. An object can include functions and

data members. Object-orientated programming represents a different style of programming, where concepts are

grouped together to match purposes. For example, a car object could contain some variables such as the

number of seats or the petrol left in the tank. The car object could also contain a GPS function that would return

the position of the car in space.

Each object is instantiated in a similar manner as a simple variable. Instead of a simple type, an object is

instantiated with a class. In the case of a simple variable,

int i;

the type is int and the variable is i . An object can be instantiated using the Square class in a similar way,

Square s;

Just as two int variables do not share the same memory location by default, two objects also do not share the

same memory location by default. This means that if a value inside an object is changed, it wi l l not normally

affect the values within another object of the same class. When an object is instantiated, the associated

constructor function described in the class declaration is cal led. The constructor function is typical ly used to

initial ise data members that belong to the class.

31

A first C++ class

Open a terminal window. Then use a text editor, such as nano or emacs, to create a fi le cal led square. h . Copy

the code below into square. h and save the fi le.

The square. h header fi le contains the class declaration, where name of the class is Square . The Square

class contains two constructor functions, two other member functions, and two data members. The name of the

constructor function must be the same as the name of the class. The program uses the first constructor if no

arguments are given and the second constructor if two values are provided. I f the object instantiation does not

match either of these constructors, then the compiler wil l report an error.

Headed fi les support l imited functional ity. For example, it is possible to return a value from function that is

declared in a header fi le. In this case, the colour() function is declared and implemented in the header fi le. In

contrast, the area() function is declared in the header fi le, but is not implemented in the header fi le. In this

example, the implementation of the constructors and the area() function is given in a . cpp source fi le.

Within a class declaration, functions and data members can be public , protected or private . public

members can be accessed from outside the class, protected members can only be accessed by objects of the

same class or of a derived class and private members can only be accessed by objects of the same class.

(The usefulness of protected members becomes clear once inheritance has been introduced.) In the case of

Square , al l of the functions are public and both data members are private .

The implementation of a class is given in a . cpp (or . cc or . cxx or . C) fi le. Create a fi le cal led Square. cpp .

Then add the code found at the top of the next page and save the fi le.

Since the Square. cpp fi le includes the implementation of functions that were defined in the class declaration, it

has to include the class declaration itself. This is included by including the header fi le Square. h . The cmath

header fi le is needed to use the pow function, which is used to square the side value.

Below the include statements, the Square. cpp fi le contains the implementation of the three functions that were

defined in the header fi le but were not implemented in the header fi le. Each of the function names is prefixed by

the class name and two colons. The constructor functions do not have a declared return type, since they return

#ifndef SQUARE_H

#define SQUARE_H

class Square {

public:

Square(void); // Default constructor

Square(double side, char colour); // Constructor with arguments

double area(); // Return the area of a square

double colour() { return m_colour; } // The colour character

private:

double m_side; // The length of a side

char m_colour; // The colour character

};

#endif

32

an object of the given class. For other functions, the return type must be given to the left of the class name. In

this example, the type double is given before Square: : area() . In the constructors, values can be assigned

to data members using the parentheses notation given or with the assignment operator (=) . The data members

act as global variables within the functions of the class. Since they are both private data members, they are

commonly prefixed with m_. This is not a requirement, but a convention that makes reading C++ code a little

simpler.

The last part of this introduction is the use of the class Square . Create a new fi le cal led main. cpp . Then add

the code below and save the fi le.

To use the class, the main. cpp fi le includes the header fi le Square. h . Two objects are instantiated, where the

first instantiation cal ls the default constructor and the second instantiation cal ls the second constructor. Then the

two functions area() and colour() are cal led and the values of the area and the colour (integer value) is

printed on the screen. When call ing a function of a given object, the function name is prefixed with the object

name. In this example, the objects are created on the stack and go out of scope in the same way as a simple

variable. This means that the two objects are destroyed when the main() function finishes.

Rather than type g++ several times, a Makefile can be used to compile the two . cpp fi les and produce an

executable. Create a new fi le cal led Makefile , add the code at the top of the next page and save the fi le. The

indented l ines should be indented by a single tab, rather than spaces. (More information on Makefi les is provided

#include "Square. h"

#include <cmath>

Square: : Square(void):

m_side(0.),

m_colour(' 0') {

}

Square: : Square(double side, char colour):

m_side(side),

m_colour(colour) {

}

double Square: : area() {

return std: : pow(m_side, 2);

}

#include <iostream>

#include "Square. h"

using namespace std;

int main() {

Square s; // Using the default constructor

Square s2(3. 0, ' b'); // Using the second constructor

cout << "s. area()=" << s. area() << ", s. colour()=" << s. colour() << endl;

cout << "s2. area()=" << s2. area() << ", s2. colour()=" << s2. colour() << endl;

return 0;

}

33

in Issue 7 of The MagPi.) The Makefi le should be in the same directory as the Square. h , Square. cpp and

main. cpp fi les. Then type

make

to compile the code and bui ld the executable. Once the executable has been bui ld, run the program:

. /square

Objects on the heap

When an object is needed within several different functions cal ls, i t might be helpful to create it on the heap

instead. The difference between creating an object on the stack and the heap is that objects on the stack are

automatical ly cleaned up when they go out of scope, whereas objects on the heap stay in memory. To clean up

an object on the heap, it has to be explicitly deleted. A modified version of main.cpp is given below, where the

objects are created on the heap instead. The syntax s->colour() is short hand for (*s). colour() .

CC=g++

TARGET=square

OBJECTS=main. o Square. o

$(TARGET): $(OBJECTS)

@echo "** Linking Executable"

$(CC) $(OBJECTS) -o $(TARGET)

clean:

@rm -f *. o *~

veryclean: clean

@rm -f $(TARGET)

%. o: %. cpp

@echo "** Compiling C++ Source"

$(CC) -c $(INCFLAGS) $<

#include <iostream>

#include "Square. h"

using namespace std;

int main() {

Square *s = new Square(); // Using the default constructor

Square *s2 = new Square(3. 0, ' b'); // Using the second constructor

cout << "s->area()=" << s->area() << ", s->colour()=" << s->colour() << endl;

cout << "s2->area()=" << s2->area() << ", s2->colour()=" << s2->colour() << endl;

delete s;

delete s2;

return 0;

}

34

SKILL LEVEL : INTERMEDIATE

Gianluca Serra

Guest Writer

CHAT ROOM

Turn your Raspberry Pi into an

XMPP Chat Server

The storyDue to its low cost and power consumption,

the Raspberry Pi is probably the best device to bui ld

a home server from. A home server is able to do a lot

of useful things, including running as a media center,

home repository, power or temperature monitoring

and much more.

In my opinion, one of the more interesting uses of the

Raspberry Pi is as an XMPP server. XMPP is a

standard protocol for Instant Messaging, used by

GTalk for example, that provides infrastructure for an

XMPP server to send messages and two or more

XMPP clients to exchange messages to each other.

I was searching for the best XMPP server to put on a

Raspberry Pi when I came across Prosody

(https://prosody.im). Prosody is a l ightweight XMPP

server written in LUA (a fast programming language

based on C and used for game programming) with al l

of the basic capabi l i ties of an XMPP server, plus

some extra-modules you can add as you wish, such

as an admin console, secure communication, etc.

With a XMPP server instal led on your Raspberry Pi

you can create a chat server to be used on your

intranet Wi-Fi network (between you and your

relatives, for example) or a real Internet chat server

(l ike GTalk or WhatsApp) exposed through the

Internet and under your control.

In this article we'l l describe how to create an Internet

chat server with private and restricted access.

Setup Prosody

Prosody has another big advantage: it is in the

Raspbian repository. You can instal l i t simply by

typing:

$ sudo apt-get update
$ sudo apt-get install prosody

Once your download and instal lation are completed,

you need to do two things:

1) Create a valid configuration fi le for Prosody

2) Create users that you want to be in your chat l ist

Obviously, i f you want to expose your chat service

through the Internet, you wil l need to setup port-

forwarding on your router and point to the selected

port for the Prosody server. We'l l come to that in a

minute.

You can locate the config fi le in:

/etc/prosody/prosody.cfg.lua

Create a backup of this fi le if i t already exists. Then,

replace the contents with the fol lowing. You can also

find an example at:

https://prosody.im/doc/example_config

https://prosody.im
https://prosody.im/doc/example_config

35

Let's run through this fi le and see what it does. The

"modules_enabled" section defines which modules

Prosody loads on startup. Some are required, others

are optional. Feel free to select the modules you l ike.

The "posix" module for example is necessary for the

UNIX system (so, also for Raspberry Pi) , whi le the

"register" module is useful only if you want to al low

external users to register with your chat service (see

below).

The next parameter is "allow_registration".

This al lows external registration. I have set this to

false because I wanted to create my chat service

users manually as I want to create a private and

modules_enabled = {

-- Generally required

"roster"; -- Allow users to have a roster. Recommended ;)

"saslauth"; -- Authentication for clients and servers.

"tls"; -- Add support for secure TLS on c2s/s2s connections

"dialback"; -- s2s dialback support

"disco"; -- Service discovery

-- Not essential, but recommended

"private"; -- Private XML storage (for room bookmarks, etc.)

"vcard"; -- Allow users to set vCards

-- Nice to have

"legacyauth"; -- Legacy authentication. Only used by some old clients and bots.

"version"; -- Replies to server version requests

"uptime"; -- Report how long server has been running

"time"; -- Let others know the time here on this server

"ping"; -- Replies to XMPP pings with pongs

"register"; -- Allow users to register on this server using a client and change passwords

-- Other specific functionality

"posix"; -- POSIX functionality, sends server to background, enables syslog, etc.

--"console"; -- telnet to port 5582 (needs console_enabled = true)

--"bosh"; -- Enable BOSH clients, aka "Jabber over HTTP"

--"httpserver"; -- Serve static files from a directory over HTTP

};

-- Disable account creation by default, for security

-- For more information see http://prosody.im/doc/creating_accounts

allow_registration = false;

-- Debian:

-- send the server to the background

daemonize = true;

-- Create a pidfile for nohup launch

pidfile = "/var/run/prosody/prosody.pid";

-- Logs info and higher to /var/log

log = {

-- Log files (change 'infor' to 'debug' for debug logs):

info = "/var/log/prosody/prosody.log";

error = "/var/log/prosody/prosody.err";

-- Syslog:

{ levels = { "error" }; to = "syslog"; };

}

-- Your personal domain

VirtualHost "mydomain";

c2s_ports = {5222};

36

hidden service. Only an administrative user logged

onto the Raspberry Pi and with privi leges to run

Prosody commands can create and delete users.

The "daemonize" parameter is useful, in combination

with "pidfile" if you want to run Prosody without

creating a nohup script (i .e.: to keep Prosody running

even if you log out of the Raspberry Pi) . Furthermore,

you can manage the Prosody service with the init.d

commands (start, restart, stop, etc.) For example:

$ sudo /etc/init.d/prosody restart

By adding the "log" directive we can detect any error

or eventual intrusion in your chat server. You can

specify any path you l ike, but I suggest you keep to

the default /var/log fi les.

The last, "VirtualHost", enables the administrator
to create various hosts each with one or more users.

A VirtualHost is effectively a single chatroom or chat

service, independent from any other, which can can

contain one or more users. For my purpose, I created

a single domain named "mydomain".

Under each VirtualHost you can define zero or more

directives that can override the master ones: you can

specify a specific log directive, or al low external

registration by overriding the parameter

"allow_registration" for example.

In my fi le I expl icitly put the "c2s_ports" directive

with the default value of 5222 in order to al low me to

easi ly change it as we wil l see in the next section.

That directive specifies a comma-separated array of

port numbers on which the Prosody server wil l l isten.

Create users

Prosody comes with an uti l i ty cal led prosodyctl

that al lows you to create users and manage the

service. Create your users with the fol lowing, entering

a password for the user in each case when prompted:

$ sudo prosodyctl adduser user1@mydomain
$ sudo prosodyctl adduser user2@mydomain

By entering the above, we have created two users

bound to the 'mydomain' domain.

Now, restart (or start) the server:

$ prosodyctl restart

Congratulations! Your chat service should now be up

and running.

The client side

Now, to test it. Let's instal l some XMPP clients on

your preferred devices. I have an Android phone, on

which I instal led Xabber (from Play Store) and a

MacBook with Adium.

Both Xabber and Adium have a simple wizard to

configure your account. With Xabber, you create a

new account with username user1 @mydomain and

the password you specified.

Other important parameters you need to modify are

the host and port under Settings > XMPP accounts

panel. By default, Prosody runs on port 5222 (the

standard XMPP port) , whi le for the host, simply type

your Raspberry Pi 's current IP address on your

network.

Do the same things with Adium or with another

Android device with Xabber (or with CrossTalk for

iPhone). Once your devices are connected to the

chat service, add each other by adding a new

contact. The procedure is the same for al l IM

services: user1 asks to add user2 and user2 has to

confirm the friendship.

You should be able to send and receive messages

from user1 and user2, through your XMPP clients

and via your Raspberry Pi.

Expose the service to the Internet

Optional ly you can publish your service onto the

Internet. First, choose a port (or a set of ports) that

you can forward behind your router (default: 5222),

noting that some Internet providers restrict access to

some ports. For example I set the directive l ike this:

c2s_ports = { 9999 }

and port-forwarded 9999 to my local Raspberry Pi 's

IP address. In this way, al l requestes received

through port 9999 from the Internet wil l be directed to

my Raspberry Pi, which Prosody wil l catch as it is

l istening on port 9999.

To access the chat service across the Internet from

outside your LAN change the host and port for

Xabber: change the IP address to your router's public

31

facing IP address and port to 9999. You should now

be able to exchange messages outside your local

network. Try it!

Security

Once you have exposed your service you are

probably asking yourself: how can I protect my

chatrooms with a secure channel? Prosody al lows

you to set up SSL/TLS configuration to encrypt

communications and to ensure that the server you are

talking with is real ly your server (the Raspberry Pi) .

To add an advanced security configuration you first

need to create a certificate, which is a kind of bucked

in which is stored the server's identity. With a trusted

certificate successful ly verified a cl ient can check if

the server is real ly who it claims to be. To create a

certificate and a valid SSL/TLS configuration I

suggest these l inks:

https://prosody.im/doc/certificates

https://prosody.im/doc/advanced_ssl_config

References

Prosody website: https://prosody.im

Xabber cl ient: http://www.xabber.org

Adium client: https://adium.im

The excel lent Pidgin chat cl ient is avai lable directly

from the Raspbian respository for use on the

Raspberry Pi:

$ sudo apt-get install pidgin

After instal lation you wil l find Pidgin under LXDE's

Main Menu / Internet / Pidgin Instant Messenger.

Within Pidgin, the menu option Accounts / Manage

Accounts lets you add one of your pre-defined

Prosody users.

http://www.pimodules.com
https://prosody.im/doc/certificates
https://prosody.im/doc/advanced_ssl_config
https://prosody.im
http://www.xabber.org
https://adium.im

38

SKILL LEVEL : BEGINNER

Bernhard Suter

Guest Writer

LINUX COMMANDS
bash, which & history

Tales from the Linux tool shed:

Don’t bash the shell!

Bash

The first Linux command-l ine command which a user

encounters might typical ly be bash , the default Linux

command-l ine interpreter itself.

For many newcomers, the Linux command-l ine

interface can feel dauntingly complex and often

sl ightly inconsistent. One of the reasons for this

feel ing might be that there real ly isn’t such a thing as

a single monolithic Linux command-l ine interface.

The interface which we see is the result of a relatively

basic command-l ine interpreter shel l in combination

with a vast and ever growing col lection of commands,

which are each stand-alone executable programs

instal led somewhere on the fi lesystem.

A shel l is just l ike any of these commands, except

that one of its main purposes is to interact with the

user and to execute other commands. There are

several popular shel ls avai lable - besides the original

sh , for example also ksh , csh or tcsh - but on Linux

today, bash has largely become the standard.

bash is named somewhat tongue in cheek “Bourne

again shel l”, after the sh or Bourne shel l , which was

written by Steven Bourne, a British computer scientist

working at Bel l Labs on the early Unix system.

Like most shel ls, bash can be used both in an

interactive as well as in a batch mode. In batch mode,

bash becomes a programming language interpreter

in its own right. How to use bash as a scripting

language is described in more detai l in the “Bash

Gaffer Tape” series starting in Issue 1 0 of The

MagPi.

In interactive mode, bash allows the user to edit the

current command line buffer using the left and right

arrow keys, delete etc. and toggle through the history

of recent commands using the up and down arrow

keys. I t also supports many more cryptic but powerful

<Ctrl>-key sequences for l ine editing and navigation.

However the main purpose of an interactive shel l

session is usual ly to run some other programs on

behalf of the user.

Command execution

When the user presses <Enter>, the shel l processes

the state of the command line editing buffer, breaks

the input string into the appropriate pieces, maybe

performs some variable substitutions, and executes

some bui lt-in commands or sets up one or more

external commands to be executed.

For example, in order to execute,

39

pi@raspberrypi ~ $ ls -l $SHELL

-rwxr-xr-x 1 root root 813992 Jan 10 2013

/bin/bash

bash first expands the variable “SHELL” to its

definition SHELL=/bin/bash, because $<varname>

triggers variable substitution. Then it locates the

executable which corresponds to the command ls

and executes it with the two arguments -l and

/bin/bash .

Which

An executable is located by searching in order

through the l ist of directories in the PATH

environment variable, which typical ly in a default

instal lation of Raspbian is set to:

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin:/usr/local/games:/usr/games

We can look at where bash would find a particular

command by using the which command:

pi@raspberrypi ~ $ which ls

/bin/ls

pi@raspberrypi ~ $ which which

/usr/bin/which

Each executable program in the search path in fact

appears to be a bash command. Many l ike l s , bash

i tself, or others discussed in this series, are part of

the standard Linux distribution. But each user can

also write their own programs and run them from the

shel l l ike any standard tool. Some commands like cd

or history are directly executed by the shel l i tself

and are cal led "bui ltin" commands (enter man

builtins for a complete l ist) .

I /O redirection & pipelining

One of the most powerful aspects of bash is

input/output redirection. Each program which is run

from the shel l is launched with three pseudo-fi les

open at startup: standard input, standard output and

standard error (output) . By default they are connected

to the terminal where the shel l is running. There are

two major ways to change that default association:

I /O redirection and pipel ining.

Redirection

I /O redirection involves the use of operators to

connect one of the three I/O streams to a named fi le

instead of the interactive terminal:

< : redirect input

> : redirect output

2> : redirect error output

>> : redirect output and append instead of overwrite

pi@raspberrypi ~ $ grep raspberry < input. txt

> output. txt 2> error. txt

In the above example, the grep string matching tool

is reading l ines of text from the fi le “input.txt”, instead

of the console, and writes those which contain the

sub-string “raspberry” into the fi le “output.txt”,

instead of printing them to the console. I f there are

any errors, they are written to the fi le “error.txt”.

Pipelining

Pipel ining requires the shel l to run multiple programs

in paral lel and use the | pipe operator to directly feed

the output from one command into the input of the

next command, as if they were connected by a data

pipe.

Because of a shared design phi losophy, most

common Linux commands are very simple and

typical ly only have one purpose... and most of them

operate on simple unformatted text. Using the pipe

operator, the shel l al lows them to be combined in

ingenious ways to achieve much more complex

functional ity.

To put it into the words of Douglas McI lroy, the

inventor of the Unix pipe concept:

“This is the Unix philosophy: Write programs that do

one thing and do it well. Write programs to work

together. Write programs to handle text streams,

because that is a universal interface.”

40

pi@raspberrypi ~ $ cat /etc/passwd | cut -d:

-f7 | sort | uniq -c | sort -nr

17 /bin/sh

5 /bin/false

2 /bin/bash

1 /usr/sbin/nologin

1 /bin/sync

In this example, the cat command reads a fi le named

/etc/passwd and simply writes it to the standard

output. This output then becomes the input to the cut

command which extracts the 7th field separated by

the : character and writes this to its output steam.

This is then piped to the sort command which

alphabetical ly sorts the l ines it reads from its input

and returns the new sort order to its output. The uni q

command takes the sorted output and removes and

counts the duplicate l ines. I t writes each l ine to the

output, prefixed with the number of times it was

present in the input. Final ly this output is passed to a

second sort command which sorts its input

numerical ly in reverse order and writes this to its

output, which happens to be the console from where

the shel l is running al l this.

The /etc/passwd fi le contains the configuration

setup of al l the user accounts in the system, with

different kinds of information separated by a “:”

character. The 7th field in each l ine is the login shel l

for this user. There are only 2 accounts which use

bash - the root and pi user accounts in this case. Al l

the other accounts are system or role accounts for

particular services and are never intended to be

logged in. Some use commands as their login shel l ,

which are not real ly shel ls, l ike fal se or nologi n .

Job control

While pipel ining is used to bui ld up multiple, simple

commands into an interconnected super-command,

job control al lows the user to run several unrelated

commands from the same bash shel l at the same

time. This is particularly useful in a graphical

environment l ike the LXDE window desktop, where a

command line window can be used to launch several

graphical applications:

pi@raspberrypi ~ $ debian-reference &

[1] 16220

pi@raspberrypi ~ $ leafpad &

[2] 16236

pi@raspberrypi ~ $ idle3 &

[3] 16256

Adding the & to the end of a command line wil l

execute it in the background, immediately freeing up

the shel l to receive more input and suspending the

standard input of the command unless it has been

redirected. Any output from the command may

continue to go to the shel l though. We can also

interrupt a blocking command by pressing <Ctrl>-Z to

freeze or suspend it and then release it to continue

executing in the background by typing bg .

I f there are any jobs running in the background, we

can see their ID and executed command line using

the jobs command. We can then bring any of them

into the foreground context using the command fg

[job number] and if necessary, terminate the

command by pressing <Ctrl>-C.

pi@raspberrypi ~ $ jobs

[1] Running debian-reference &

[2] Running leafpad &

[3] Running idle3 &

pi@raspberrypi ~ $ fg 1

debian-reference

^C

pi@raspberrypi ~ $

History lesson

Having started this article on the history of bash , we

are now coming ful l circle and look at the history

command. This very useful command lets us look at

al l the commands we have previously executed and

recal l some of them in a variety of ways. The

history command itself l ists al l the commands

which were executed by the current user, as far back

as the history fi le goes. For example:

pi@raspberrypi ~ $ history

1 ifconfig -a

2 sudo raspi-config

3 ls

. . .

41

965 cat /etc/passwd | cut -d: -f7 | sort |

uniq -c | sort -nr

966 less /etc/passwd

967 history

pi@raspberrypi ~ $

Using the up arrow key, we can the fl ip back through

the history unti l we get to the command we want to

re-run, or edit the l ine first before running.

I f we are looking for something more specific, we can

also fi l ter the output of history, e.g. with the grep

tool:

pi@raspberrypi ~ $ history | grep grep

909 grep raspberry < input. txt > output. txt 2>

error. txt

911 cat | grep -v mouse | sort | uniq -c

969 history | grep grep

pi@raspberrypi ~ $

In a graphical terminal, we can use the mouse to

copy/paste any command from the history output to

the command line, or otherwise recal l a l ine by its

number by prefixing it with an exclaimation mark ! :

pi@raspberrypi ~ $! 909

grep raspberry < input. txt > output. txt 2>

error. txt

-bash: input. txt: No such file or directory

pi@raspberrypi ~ $

We can also press <Ctrl>-R to start a search back

through the history for the first command which

contains whatever we are now typing:

pi@raspberrypi ~ $

(reverse-i-search)` fun' : echo “bash is a lot

of fun…”

Auto-complete

Another convenient shorthand is contextual auto-

completion. Depending on the position in the

command-l ine, pressing the <Tab> key once may

complete the current word behind the cursor, if there

is a single matching completion. Pressing the <Tab>

key twice prints al l the possible suggestions. For

example, typing ba<Tab><Tab> results in:

pi@raspberrypi ~ $ ba

badblocks base64 basename bash bashbug

pi@raspberrypi ~ $ ba

Auto-completion is a nice way to avoid typos and

save on some typing for command names or complex

fi lesystem paths for example. For some common

commands, even the options can be auto-completed.

For example, typing ls --<Tab><Tab> results in:

pi@raspberrypi ~ $ ls --

--all

--almost-all

. . .

--version

--width=

pi@raspberrypi ~ $ ls --

Simplicity

You can also customize the behaviour and

appearance of your login shel l session by adding

configuration commands to some of the default fi les

which bash loads and executes on startup, e.g.

reading from ~/. bashrc .

Part of the elegant simplicity of the Unix command

model is that the command line interpreter is nothing

but a command itself, which happens to execute

other commands. I t has no special privi leges and

anybody could write one of their own. However, a well

designed shel l l ike bash should play to the strength of

the Unix phi losophy where each tool should be

simple, do one thing well and be able to act as a fi l ter

in a multi-stage pipel ine of commands to implement

complex functions as needed.

Modern shel ls l ike bash have a lot of nice usabi l i ty

features which make interacting with a Linux terminal

session a lot less daunting and knowing some of the

tricks and shorthands can save a lot of time.

But bash is only as useful as the commands it can

execute. What are some of your favorite or most

puzzl ing Linux commands? Send your comments to

editor@themagpi.com and maybe we can cover them

in a later episode.

mailto:editor@themagpi.com

Maker Faire Bay Area 201 4

When: Saturday 1 7th to Sunday 1 8th May 201 4, 1 0.00am to 6.00pm (PDT)
Where: San Mateo County Event Center, 1 346 Saratoga Dr, San Mateo, CA 94403, USA

Celebrate MAKE magazine's 1 7th Maker Faire, showcasing creativity in the areas of science and

technology, engineering, food, and arts and crafts. http://www.eventbrite.com/e/9098302267

North Staffordshire Raspberry Jam

When: Monday 1 2th May 201 4, 6.00pm to 9.00pm
Where: Newcastle under Lyme College, Knutton Lane, Newcastle-under-Lyme, ST5 2GB, UK

An evening to al low Raspberry Pi users an opportunity to network, learn and show off projects.
https://northstaffsrjam1 .eventbrite.co.uk

Using Raspberry Pi GPIO to teach computing

When: Wednesday 21 st May 201 4, 1 .30pm to 5.30pm
Where: East Bui lding 0.1 0, The University of Bath, Claverton Down, Bath, BA2 7AY, UK

A half day course on getting the most from Raspberry Pis in the school environment.
http://www.eventbrite.co.uk/e/1 1 1 67882437

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Focus on Education @ Cambridge Raspberry Jam

When: Saturday 1 0th May 201 4, 1 2.00pm to 6.00pm
Where: Institute of Astronomy, Madingley Rd, CB3 0HA, UK

For teachers, co-ordinators and other educators: talks and presentations centring on the new

Computing curriculum. http://www.eventbrite.co.uk/e/1 0867072707

PiCymru - Cardiff Raspberry Jam

When: Saturday 1 7th May 201 4, 1 .30pm to 5.30pm
Where: Howardian Centre, Hammond Way, Cardiff, CF23 9NB, UK

The second event organised by PiCymru: talks, demos and show and tel l . The MagPi wil l be there -

come along and say hel lo. https://www.eventbrite.co.uk/e/1 1 0391 75471

42

http://www.eventbrite.co.uk/e/11167882437
https://www.eventbrite.co.uk/e/11039175471
http://www.eventbrite.co.uk/e/10867072707
http://www.eventbrite.com/e/9098302267
https://northstaffsrjam1.eventbrite.co.uk

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

44

SKILL LEVEL : BEGINNER

Samuel Aaron

Guest Writer

SONIC PI 2.0
Get your groove on!

Discover new samples, synths,

studio effects and Live Coding

Live Coding

The laser beams sliced through the wafts of

smoke as the subwoofer pumped bass deep into

the bodies of the crowd. The atmosphere was

ripe with a heady mix of synths and dancing.

However something wasn't quite right in this

nightclub. Projected in bright colours above the

DJ booth was futuristic text, moving, dancing,

flashing. This wasn't fancy visuals, i t was merely

a projection of a terminal containing Emacs. The

occupants of the DJ booth weren't spinning

disks, they were writing, editing and evaluating

code. This was a Meta-eX (http://meta-ex.com)

gig. The code was their musical interface and

they were playing it l ive.

Coding music l ike this is a growing trend and is

often described as Live Coding

(http://toplap.org). One of the recent directions

this approach to music making has taken is the

Algorave (http://algorave.com) - events where

artists code music for people to dance to.

However, you don't need to be in a nightclub to

Live Code. As one half of Meta-eX and author of

Sonic Pi, I designed version 2 to give you the

power to Live Code music anywhere you can

take your Raspberry Pi and a pair of

headphones, or some speakers. Once you reach

the end of this article, you'l l be programming your

own beats and modifying them live. Where you

go afterwards wil l only be constrained by your

imagination.

Getting Sonic Pi v2.0

For this article you wil l need version 2.0 of Sonic

Pi. You can tel l i f you are using version 2.0 from

the opening splash screen. At the time of writing

version 2 is in the final stages of development.

You can get a copy of the latest release

candidate, along with instal lation instructions, at

http://sonic-pi .net/get-v2.0. When version 2.0 is

released, you wil l be able to update with:

sudo apt-get install sonic-pi

http://meta-ex.com
http://toplap.org
http://algorave.com
http://sonic-pi.net/get-v2.0

45

You wil l then be able to open Sonic Pi by cl icking

on the main menu, and looking within Education

-> Sonic Pi .

What's New?

Some of you may have already had a play

around with Sonic Pi. Hopeful ly you al l had fun

making beeps of different pitches. You can take

all the music coding ski l ls you've learned with

version 1 and apply it to version 2. For those of

you that have yet to open Sonic Pi, now is

definitely the time to give it a try. You'l l be

amazed with what you can do with it. Here's a

quick l ist of the major new features:

* Ships with over 20 synth sounds

* Abil i ty to play any wav or aiff sample fi le

* Ships with over 70 samples

* Extremely accurate timing

* Support for over 1 0 studio effects: reverb, echo,

distortion, etc.

* Support for Live Coding: changing the code

while it runs

Let's have a look at al l of these features.

Playing a drum loop

Let's code up a simple drum loop. We can use

the amen break to get us started. In the main

code editor window of Sonic Pi, type the

fol lowing and then hit the Run button:

sample : loop_amen

Boom! Instant drums! Go on, press it a few

times. Have fun. I ' l l sti l l be here when you've

finished.

But that's not al l . We can mess around with the

sample. Try this:

sample : loop_amen, rate: 0. 5

Oooh, half speed. Go on, try changing the rate.

Try lower and higher numbers. What happens if

you use a negative number?

What if we wanted to play the loop a few times

over? One way to do this is to cal l sample a few

times with some sleeps in between:

sample : loop_amen

sleep 1. 753

sample : loop_amen

sleep 1. 753

sample : loop_amen

However, this could get a bit annoying if you

wanted to repeat it 1 0 times. So we have a nice

way of saying that with code:

10. times do

sample : loop_amen

sleep 1. 753

end

Of course, we can change the 1 0 to whatever

number we want. Go on, try it! What if we want to

loop forever? We simply say loop instead of

10. times . Also, I 'm sure you're asking what the

magic 1 .753 represents and how I got it. Well , i t

is the length of the sample in seconds and I got it

because I asked Sonic Pi:

puts sample_duration : loop_amen

And it told me 1 .75331 0657596372 - I just

shortended it to 1 .753 to make it easier for you to

type in. Now, the cool thing is, we can combine

this code and add a variable for fun:

sample_to_loop = : loop_amen

sample_rate = 0. 5

loop do

sample sample_to_loop, rate: sample_rate

sleep sample_duration sample_to_loop, rate:

sample_rate

end

Now, you can change the : loop_amen to any of

the other loop samples (use the auto-complete to

discover them). Change the rate too. Have fun!

For a complete l ist of avai lable samples cl ick the

Help button.

46

Adding Effects

One of the most exciting features in version 2.0

of Sonic Pi is the support for studio effects such

as reverb, echo and distortion. These are real ly

easy to use. For example take the fol lowing

sample trigger code:

sample : guit_e_fifths

To add some reverb to this, we simply need to

wrap it with a with_fx block:

with_fx : reverb do

sample : guit_e_fifths

end

To add some distortion, we can add more fx:

with_fx : reverb do

with_fx : disortion do

sample : guit_e_fifths

end

end

Just l ike synths and samples, FX also supports

parameters, so you can tinker with their settings:

with_fx : reverb, mix: 0. 8 do

with_fx : distortion, distort: 0. 8 do

sample : guit_e_fifths

end

end

Of course, you can wrap FX blocks around any

code. For example here's how you'd combine the

: ixi_techno FX and our drum loop:

with_fx : ixi_techno do

loop do

sample : loop_amen

sleep sample_duration : loop_amen

end

end

For a complete l ist of FX and their parameters

cl ick the Help button.

Live Coding a Synth Loop

Now we've mastered the basics of triggering

samples, sleeping and looping, let's do the same

with some synths and then jump head first into

l ive coding territory:

loop do

use_synth : tb303

play 30, attack: 0, release: 0. 3

sleep 0. 5

end

So, what do the numbers mean in this example?

Well , you could stop it playing, change a number,

then start it and see if you can hear the

difference. However al l that stopping and starting

gets quite annoying. Let's make it possible to l ive

code so you can instantly hear changes. We

need to put our code into a named function which

we loop:

define : play_my_synth do

use_synth : tb303

play 30, attack: 0, release: 0. 3

sleep 0. 5

end

loop do

play_my_synth

end

Now when you run this it wi l l sound exactly the

same as the simpler loop above. However, now

we have given our code a name (in this case,

play_my_synth) we can change the definition of

our code while things run. Fol low these steps:

1 . Write the code above (both the define and loop

blocks)

2. Press the Run button

3. Comment out the loop block (by adding # at

the beginning of each l ine)

4. Change the definition of your function

5. Press the Run button again

6. Keep changing the definition and pressing

Run!

7. Press Stop

For example, start with the code above. Hit Run.

Comment out the loop block then change the

play command to something different. Your

code should look similar to this:

47

define : play_my_synth do

use_synth : tb303

play 45, attack: 0, release: 0. 3, cutoff:

70

sleep 0. 5

end

loop do

play_my_synth

end

Then hit the Run button again. You should hear

the note go higher. Try changing the attack,

release and cutoff parameters. Listen to the

effect they have. Notice that attack and release

change the length of the note and that cutoff

changes the 'brightness' of the sound. Try

changing the synth too - fun values are

: prophet , : dsaw and : supersaw. Press the

Help button for a ful l l ist.

There are lots of other things we can do now, but

unfortunately I 'm running out of space in this

article so I 'l l just throw a couple of ideas at you.

First, we can try some randomisation. A real ly fun

function is rrand . I t wi l l return a random value

between two values. We can use this to make

the cuffoff bounce around for a real ly cool effect.

Instead of passing a number l ike 70 to the cutoff

value, try rrand(40, 120) . Also, instead of only

playing note 45, let's choose a value from a list of

numbers. Try changing 45 to chord(: a3,

: minor). choose . Your play l ine should look l ike

this:

play chord(: a2, : minor). choose, attack: 0,

release: 0. 3, cutoff: rrand(40, 120)

Now you can start experimenting with different

chords and range values for cutoff. You can do

something similar with the pan value too:

play chord(: a2, : minor). choose, attack: 0,

release: 0. 3, cutoff: rrand(40, 120), pan:

rrand(-1, 1)

Now throw some FX in, mess around and just

have fun! Here are some interesting starting

points for you to play with. Change the code,

mash it up, take it in a new direction and perform

for your friends!

Haunted Bells

loop do

sample : perc_bell, rate: (rrand 0. 125, 1. 5)

sleep rrand(0. 5, 2)

end

FM Noise

use_synth : fm

loop do

p = play chord(: Eb3, : minor). choose -

[0, 12, -12] . choose, divisor: 0. 01, div_slide:

rrand(1, 100), depth: rrand(0. 1, 2), attack:

0. 01, release: rrand(0. 1, 5), amp: 0. 5

p. control divisor: rrand(0. 001, 50)

sleep [0. 5, 1, 2] . choose

end

Driving Pulse

define : drums do

sample : drum_heavy_kick, rate: 0. 75

sleep 0. 5

sample : drum_heavy_kick

sleep 0. 5

end

define : synths do

use_synth : mod_pulse

use_synth_defaults amp: 1, mod_range: 15,

attack: 0. 03, release: 0. 6, cutoff: 80,

pulse_width: 0. 2, mod_rate: 4

play 30

sleep 0. 25

play 38

sleep 0. 25

end

in_thread(name: : t1){loop{drums}}

in_thread(name: : t2){loop{synths}}

#tron bike

loop do

with_synth : dsaw do

with_fx(: slicer, freq: [4, 8] . choose) do

with_fx(: reverb, room: 0. 5, mix: 0. 3) do

n1 = chord([: b1, : b2, : e1, : e2, : b3,

: e3] . choose, : minor). choose

n2 = chord([: b1, : b2, : e1, : e2, : b3,

: e3] . choose, : minor). choose

p = play n1, amp: 2, release: 8,

note_slide: 4, cutoff: 30, cutoff_slide: 4,

detune: rrand(0, 0. 2)

p. control note: n2, cutoff: rrand(80,

120)

end

end

end

sleep 8

end

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time
At The MagPi, we love to hear

your feedback - whether it is by

email , Facebook, Twitter or face

to face at one the many

Raspberry Pi related events that

are happening global ly. Recently,

our very own Colin Deady was at

the Digimakers At-Bristol event

and here is some of the feedback

he received from people visiting

The MagPi stand:

Every month the magazine is

released some of the kids at my

school print and photocopy it so

they each have their own copy.

Keep up the good work, we look

forward to every issue.

From a teacher

I t’s great to see Volume 2 of The

MagPi in print. I t’s looking even

better than Volume 1 .

Anon

The MagPi magpie.. . i t looks more

l ike an eagle

Anon

Do you cover Minecraft?

Teen 1

Do you cover Minecraft?

Teen 2

Do you cover Minecraft?

Teen ...n

As you can see there was a

common thread to a number of

these questions - and the answer

to those is YES! (Issue 1 1 covers

Minecraft and is avai lable onl ine

and in print.)

So the next time you're at an

event and you see The MagPi

stand, come over and say hel lo!

I recently discovered the

Raspberry Pi whi le looking for an

FM transmitter I could use at work

after getting tired of l istening to

the same songs I 've been

l istening to for the last 35 years. I

found an easy solution using the

Rasberry Pi. I also discovered

your fantastic magazine, which

brought back great memories of

typing in code from magazines

into my Vic 20. I have always

regretted sel l ing that computer,

and the Raspberry Pi is a great

way to bring back those days.

I look forward to getting to know

my little computer better through

your magazine. I have an exciting

project in mind, and can't wait to

get experienced enough so I can

implement and share it!

Thank you,

Lynn Wil l is

Salt Lake City, Utah

If you are interested in writing for

The MagPi, would l ike to request

an article or would l ike to join the

team involved in the production of

the magazine, please get in touch

by email ing the editor at:

editor@themagpi.com

http://creativecommons.org/licenses/by-nc-sa/3.0/

