
IISSSSUUEE 1177 -- OOCCTT 22001133

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

II //OO EExxppaannssiioonn BBooaarrddss

RRaaddiioo IInntteerrffaaccee

CC aanndd SSccrraattcchh

EEyyee TTrraacckkiinngg

XXMMLL

RRoobboottiiccss

wwiitthh BBrriicckkPPii

Win a
Raspberry Pi
16GB SD card
breadboard &

more

Ash Stone - Chief Editor / Administration / Layout

W.H. Bell - Issue Editor / Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Tester / Proof Reading

Matt Judge - Website / Administration

Aaron Shaw - Layout

Colin Deady - Layout / Tester / Proof Reading

Shelton Caruthers - Tester / Proof Reading

The MagPi Team

Claire Price - Layout / Proof Reading

Matt Weaver - Layout

Bulent Tuncel - Layout

Matthew Watson - Layout

Phil Tesseyman - Tester

Courtney Blush - Proof Reading

Amy-Clare Martin - Proof Reading

Gerry Fillery - Proof Reading

2

17

Welcome to The MagPi - a free to download community driven magazine packed

to the brim with al l things Raspberry Pi.

As you can see from the cover, issue 1 7 has gone all robotic! We feature a great article from the team

at Dexter Industries taking a look at their clever kit: the BrickPi. You may recognise the project from

Kickstarter and the Foundation site. I t is ideal for al l levels of user and a great way to get your

Raspberry Pi moving. Head over to page 4 for more information.

To add to the Sci-Fi theme we have included another article using the Raspberry Pi camera module.

This month we introduce you to creating a program to track eye movements. We have more on NanPy

and a great article in the series on the IO expander.

So far in The MagPi we have featured a multitude of articles which give reference to using WiFi to

communicate between peripherals. Are you bored of being confined to your network? In this issue we

set your Raspberry Pi free! Matthew looks at the abi l i ty for the Raspberry Pi to send and receive

messages using radio waves. Team that with the BrickPi and the abi l i ty to track eyes and you could

have yourself a very exciting project!

Due to its popular demand, we have more this month on XML and revive 'C Cave', describing unions

and dynamic memory al location. I f this isn’t enough, to top it al l off we have a Scratch article teaching

you how to create a program to fire bal l istic missi les!

Of course, The MagPi recommends the use of goggles and a helmet when you try this out. *cough*

cough

Hope you enjoy.

Ash Stone

Chief Editor of The MagPi

3

4 BRICKPI - LEGO® NXT INTERFACE
Plug in LEGO® sensors and motors

8
Tracking eye movement with the Raspberry Pi Camera Board

9
Part 3: Using a temperature sensor and Arduino analogue pins

22
Using pairs of radio modules with the Raspberry Pi

24
Buttons and switches with the Raspberry Pi

28
<XML />
Part 3: Control l ing your Raspberry Pi from your smartphone using RasPiConnect

30 COMPETITION

Win a Raspberry Pi Model B, breadboard, 1 6GB NOOBS SD card and accessories

32
Memory management: unions and dynamic al location

THE PICAMERAL EYETRACKER

THE C CAVE

1 2

MUNTS I/O EXPANSION BOARD

USB ARDUINO LINK

Part 2: Using the factory default firmware for the LPC1 1 1 4 I/O processor exxpansion board
1 6

LONG-RANGE WIRELESS

PHYSICAL COMPUTING

31
Pittsburgh USA, Exeter UK, Leicester UK, Stevenage UK, Miami USA
THIS MONTH'S EVENTS GUIDE

36
Going ball istic: the physics of a cannon ball
SCRATCH PATCH

Have your say about The MagPi
FEEDBACK40

http://www.themagpi.com

ContentsContentsContents

Eye image in header on page 8 by Laitr Keiows (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/l icenses/by-sa/3.0) or GFDL

(http://www.gnu.org/copyleft/fdl .html)] , via Wikimedia Commons

http://www.themagpi.com

4

SKILL LEVEL : BEGINNER

John Cole

Guest Writer

LEGO NXT INTERFACE
Plug in LEGO® sensors and motors

Building bots with LEGO

What is the BrickPi?

The BrickPi is an interface between the

Raspberry Pi and LEGO® Mindstorms sensors

and motors, a portable power source for the

Raspberry Pi, and a case that al lows you to

attach LEGO® motors, beams, sensors, and

other parts.

The BrickPi can be used to control up to four

LEGO® NXT motors and read the motor

encoder values. The motor encoder values

measure how far the motor has turned. The

BrickPi also has four sensor ports. These ports

can read digital NXT sensors or analog sensors.

There is also a fifth port that can be used with

digital sensors. The BrickPi has a battery power

unit that can provide power for the BrickPi,

sensors, motors and Raspberry Pi. The power

unit on the BrickPi can be used with a 9 to 1 2

Volt battery pack. The BrickPi system also

includes an enclosure to which LEGO® Technic

parts, sensors, and motors can be attached. The

enclosure houses the Raspberry Pi and the

BrickPi. I t is made of acryl ic and comes with

evenly-spaced holes along the top and bottom

that are big enough for Technic LEGO® pegs.

The enclosure leaves the sides of the Raspberry

Pi clear, al lowing access to the USB ports.

Getting started

Follow the setup guide at

http://www.dexterindustries.com/BrickPi/

getting-started/

to assemble the enclosure and for references to

SD instal lation or software configuration. The

BrickPi can be used with the BrickPi Raspbian

image or by fol lowing the setup guide instructions

to configure the standard Raspbian image. The

BrickPi Raspbian image contains al l of the

configuration needed to get up and running as

http://www.dexterindustries.com/BrickPi/getting-started/

5

quickly as possible.

The Raspberry Pi uses quite a lot of battery

power. Therefore, it is a good idea to plug the

Raspberry Pi into a mains adapter when it is

being programmed and use 6 AA batteries for

final remote robotics. The power consumption of

the Raspberry Pi, BrickPi and associated motors

or sensors varies according to the application.

This means that the battery pack could last for

hours or for 20 minutes, depending on what is

connected. The battery l i fe can be extended by

using a Model A Raspberry Pi.

Working with the BrickPi

The BrickPi can be programmed using a

keyboard, mouse and monitor plugged into the

Raspberry Pi. However, sometimes a spare

monitor is not avai lable or the robot might be

roaming around. Therefore, the BrickPi

Raspbian image contains an automatical ly

configured VNC server, SSH and a few other

goodies. There is a short tutorial on connecting

remotely to the Raspberry Pi using another

computer at:

http://www.dexterindustries.com/BrickPi/getting-

started/using-the-pi/

Programming

All the software for the BrickPi is open source,

al lowing it to be improved by the community.

The physical design of the BrickPi board is also

avai lable. There are detai ls of the firmware and

software too. The hardware and the software are

avai lable on Github at:

https://github.com/DexterInd/BrickPi

There are drivers for C, Python, and MITs

graphic language Scratch. The beauty of the

hardware architecture and the Raspberry Pi is

that any language that can run on the Raspberry

Pi can be used to control a students robot.

Python interface - motor control

The python example below runs one motor on

Port A forward for 3 seconds, and then

backwards for 3 seconds. At its simplest,

running a motor requires two lines of code: one

to setup the motor, and one to set the motor

power.

from BrickPi import * # import BrickPi. py file to use BrickPi

operationsBrickPiSetup() # setup the serial port for communication

BrickPi. MotorEnable[PORT_A] = 1 # Enable the Motor A

BrickPiSetupSensors() # Send the properties of sensors to BrickPi

while True: # Keep looping until the program is killed

print "Running Forward"

BrickPi. MotorSpeed[PORT_A] = 200 # Set the speed of MotorA (-255 to 255)

ot = time. time()

while(time. time() - ot < 3): # Run while loop for 3 seconds

BrickPiUpdateValues() # Ask BrickPi to update values for sensors/motors

time. sleep(. 1) # sleep for 100 ms

print "Running Reverse"

BrickPi. MotorSpeed[PORT_A] = -200 # Set the speed of MotorA (-255 to 255)

ot = time. time()

while(time. time() - ot < 3): # Run while loop for 3 seconds

BrickPiUpdateValues() # Ask BrickPi to update values for sensors/motors

time. sleep(. 1) # sleep for 100 ms

http://www.dexterindustries.com/BrickPi/getting-started/using-the-pi/
https://github.com/DexterInd/BrickPi

6

Python interface - ultrasonic sensor

The LEGO® ultrasonic sensor can be attached

to any of the four sensor ports and provides the

distance an object is from the robot.

The program above sets up the ultrasonic sensor

on Port 1 , and then reads the value from the

sensor in a loop, printing the measured distance

on the screen. Again, in its simplest form,

running the ultrasonic sensor requires al l of two

lines of code: one initial ises the sensor, and one

refreshes the value the sensor is reading.

Scratch interface - Touch sensor

The Scratch interface is avai lable through the

network connection and broadcast messages.

This is the common way to connect Scratch and

Python together, relying on a piece of supporting

Python to talk to the BrickPi. In this example, the

sprite wil l count how many times the touch

sensor has been touched.

Cool projects

After testing out some of the examples using

LEGO® sensors, there are some real ly creative

project possibi l i ties that use the horsepower of

the Raspberry Pi. There are a few examples up

already on the BrickPi Github and more wil l

fol low. So far, there are four example projects.

These projects are provided with bui lding

instructions and Python code.

Wi-Fi controlled car

The first example is a car control led with Wi-Fi

and is shown in the header graphic on page 4. In

this example, the robot is control led by logging

into the Raspberry Pi through SSH. The car is

control led using the numeric keypad on a ful l-

size keyboard, where 8 is forward and 4 is left,

etc.. The ultrasonic sensor is used to detect

objects and obstructions, and to stop the car

before it crashes into them.

from BrickPi import * # import BrickPi. py file to use BrickPi operations

BrickPiSetup() # setup the serial port for communication

BrickPi. SensorType[PORT_1] = TYPE_SENSOR_ULTRASONIC_CONT # Set type of sensor at PORT_1

BrickPiSetupSensors() # Send the properties of sensors to BrickPi

while True: # Keep looping until the program is killed

result = BrickPiUpdateValues() # Ask BrickPi to update values for sensors/motors

if not result:

print BrickPi. Sensor[PORT_1] # BrickPi. Sensor[PORT] stores value obtained from sensor

time. sleep(. 01) # sleep for 10 ms

7

Robotic arm

This example uses the BrickPi as a robotic arm

for grabbing and moving materials. In this

example, a keyboard connected to the

Raspberry Pi is used to control the movement of

the arm.

Shooter turret

This example shows how to bui ld a turret bal l

shooter. The turret can rotate and is control led

by the mouse. Moving the mouse left and right

changes the angle of the shooter, and the firing

mechanism is control led with a press of the

mouse button. A great demonstration in class

and fun in the office too.

Browser controlled tank

What better robot to bui ld with tracks than a tank.

A picture of the completed example model is on

the cover of this Issue. The example sets up a

webserver over Wi-Fi on the Raspberry Pi. The

Raspberry Pi serves up a web page that has

controls for moving the tank around and

control l ing the tank motion. The project could be

extended with a webcam or other motors for

interacting with the surroundings.

Buying motors and sensors

The BrickPi provides low cost access to robotics

with LEGO® Mindstorms. I t is not necessary to

buy a ful l LEGO® Mindstorms kit. Instead,

LEGO® sensors and motors can be bought from

the LEGO® shop:

http://shop.lego.com/en-GB/Robotics-

ByCategory

and used with any technical LEGO® set. The

LEGO® shop and pick-a-brick web site do not

sel l the connecting wires in al l countries. The

connecting wires are avai lable at:

http://www.mindsensors.com/index.php?module

=pagemaster&PAGE_user_op=view_page&PA

GE_id=66

or distributors such as:

http://www.generationrobots.com/en/401 377-

cables-for-lego-mindstorms-nxt-robots-

mindsensors.html

As well as the LEGO® sensors, other sensors

and the BrickPi itself are avai lable at:

http://www.dexterindustries.com/

Getting involved

The BrickPi is a great educational tool for young

and old. The source code and hardware is open

to al low the community to improve them. Try

bui lding your own project. There are BrickPi

forums

http://www.dexterindustries.com/forum/?forum=b

rickpi

for communicating ideas and sharing projects

with others. I t would be great to see some more

cool project ideas and hear how the BrickPi is

being used.

This is the first BrickPi article. Watch out for the

next one, where the Scratch interface wil l be

explained in detai l .

LEGO® is a trademark of the LEGO Group of companies

which does not sponsor, authorize or endorse this site

http://shop.lego.com/en-GB/Robotics-ByCategory
http://www.generationrobots.com/en/401377-cables-for-lego-mindstorms-nxt-robots-mindsensors.html
http://www.dexterindustries.com/
http://www.dexterindustries.com/forum/?forum=brickpi
http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=66

8

SKILL LEVEL : ADVANCED Jonathan Chetwynd

Guest Writer

LOOK NO HANDS
Connecting eye motion to computer control

The Picameral eye-tracker

The Picameral eye-tracker is hosted at

http://www.gnote.org and is part of a larger project

studying how we understand complex systems, my

current visual isation is http://www.peepo.com.

The Raspberry Pi computer enables, encourages and

empowers the individual to explore and conduct

independent research; so why make an eye tracker?

The eye is a chal lenge as it is easi ly the fastest

human organ, tracking its motion produces masses of

data, and there are useful rules or heuristics to be

derived from the various motions including saccades,

gl issades and fixations, or jerk, track and dwell .

Early eye-tracking research took place in a laboratory

in a strictly control led environment, perhaps using a

forehead and chin rest to study reading ski l ls or more

recently web usabi l i ty. I t has only very recently

become possible to make a cheap portable

eyetracker. The total cost for this project should be

~£1 00 which includes 2x RaspberryPi with cameras,

SD cards, cases, leads, etc. though you may already

have some of this kit.

A portable eyetracker greatly broadens possible

applications, perhaps recording and modell ing social

interactions at a party? whether side and rear-view

mirrors are being observed regularly whi lst driving? Is

a soldier in the field using appropriate IED search

techniques? You can easi ly imagine others.

There are some excel lent resources avai lable, the

approach used bui lds from the excel lent work of John

Paulin Hansen and the team at ITU in Denmark who

developed the Windows based GazeTracker; and the

book Eye Tracking: by Holmqvist & Nyström 201 1

provides a thorough introduction, without being overly

academic.

9

Creating an eye-tracker is not itself a large problem,

the difficulty is in considering the purposes for which

you wish to use your device, and hence the peripheral

devices and software required. For instance an

850ms dwell could be set to take a high quality sti l l

image using a second camera, here a cut down PS3

eyecam is connected with an RPi viewcam to a single

RPi. The setup was tested and found to capture 200

images mostly of my choice, whi le cycl ing from

Vauxhall to Kingston in about 45 minutes.

An earl ier prototype had some load balancing

problems that were improved in the final design.

Cameras have been improving fast, and the

Raspberry Pi camera has many excel lent qual ities

which we rely on. I t can easi ly be adapted as a

macro, which happens to focus at a useful distance

with good quality video images. When mounted

perpendicular to the camera board, the sensor is only

a small obstruction and James Hughes

implementation of Region Of Interest (ROI) enables

digital cropping.

For more serious research, frame rates faster than 30

are desirable, and it is hoped that for formats

considerably smaller than 1 080HD, 60-90fps may be

avai lable shortly. The sensor is capable of 500fps for

some formats, and this would al low one to estimate

accelerations as well as velocities and locations.

As a project for one person, implementing an

eyetracker requires a variety of ski l ls, however the

tasks might be split amongst a class of enthusiastic

and bright teenagers!

Outline

The physical construction is relatively simple, and

evident, in addition you wil l need: a database to store

the data, a graphical tool for cal ibration,

communications including a web server for ethernet

and uart for serial port, perhaps audio feedback, and

possibly a portable display.

Portable displays are ubiquitous, even HD is

common, but HDMI inputs are rare to non-existent. I f

your project needs a portable interface the Kindle is

cheap, and can use ethernet over usb to

communicate.

Assuming you intend to visual ise any results, which is

not a requirement, I recommend html5 and NodeJS,

a simple and powerful web server, with an up-to-date

version of a web browser such as Mozi l la Firefox,

Chrome, Safari or Opera, or possibly IE1 1 .

I t may seem counter-intuitive, but whi lst the RPi is

capable of serving the eyetracking data, including

video, it cannot currently run an html5 browser

efficiently so you may need another box. I use a 5

year old mac-mini running Debian Wheezy for

convenience.

During construction and development,

communication rel ies on ssh over ethernet. Once we

need to be portable, start applications in Screen and

detach, to leave our application running while we

unplug ethernet, and with care, later reconnect and

continue; magic indeed!

10

Software

In addition to various easy to use applications such

as raspivid, an acquaintance with a few software

languages is helpful to those wishing to develop their

own application; some javascript, html5 and svg wil l

be useful and perhaps also C and bash.

When bug hunting, and in case of difficulties, create a

reduced test case to test each part independently.

The actual iris tracking software is simple enough, we

assume that the iris covers about 30% of the image,

and is the darkest part of the image, simi lar to that

i l lustrated:

Current camera sensors adjust very fast to changes

in i l lumination. A first run assesses the overal l tone of

each frame. In tests, the upper bound for this darkest

30% ranged from 27 to 200 out of a total possible

range of 0-255, one would need to check each frame

to evaluate further. We then calculate the centre of

this darkness, our supposed iris.

So a few lines of code need to be added to the

excel lent rpi-mmal camera software from tasanakorn

based on his mmal studies:

http://github.com/raspberrypi/userland/tree/master/int

erface/mmal

Then the Raspberry Pi with eyecam can calculate

and display the output in real time at 30fps.

This x,y data is stored in our Redis database for later

visual isation, though it may also be sent via ethernet

to a website, for realtime interactive gameplay, or via

serial uart to our second Raspberry Pi with video

camera to mark the user's gaze in real-time.

Uart over serial is used to sync the eyecam and

viewcam, as a clapperboard is used to sync audio

and video. Drift is bound to arise, there is no editor,

nor cuts, and it is almost essential to have a video

timestamp, though one is not currently avai lable.

Callibration

You wil l need to cal l ibrate the eyecam's eyetracking

data with the Raspberry Pi viewcam's sensor's Field

Of View. That is, we need to al ign them in respect of

time, and to estimate the user's gaze position on the

video frame.

The user should be directly in front of a 1 080HD

screen which should cover perhaps 20% of their total

visual field. The user fol lows a moving point with their

eyes, we use a 4x4 grid which covers the whole

screen and is ordered randomly, to prevent the user

guessing the next point. This takes about a minute to

complete, for the moment assume call ibration is

complete and successful .

Ready to play my eyetracking game 'Take the Box'

and hone your ski l ls.

When designing a game that provides visual

feedback one needs to be careful ; i t can get in the

way. The aim of this game is to find which one of 1 6

boxes contains the hyperl ink. The eye moves the

cursor in this case a target, which is surprisingly

difficult to see, for it moves ever so sl ightly out of

sync.. As you hold your gaze over a box the hue

changes slowly from grey to green, and after 2

seconds when a golden heart appears, it's time to try

another box.

11

Should your gaze wander sooner, you start again.

Each time you play the game the hyperl ink is in a

different box, so no cheating.

For now this is a single player html5 game, just plug

your new eyecam into your browser box and play. I f

you've been fol lowing, you'l l remember the Raspberry

Pi cannot run an html5 browser, so for now maybe

use a PS3 eyecam and given demand an Raspberry

Pi version using x,y coordinates wil l appear.

For the future

Browser standards are being developed with the

natural assumption that a browser is in use. However

input devices do not general ly require or need a

browser. For this reason it may be helpful to develop

a range of independent input-device standards and

heuristics which whilst not constrained by browser

standards, may be considered.

Social media heatmaps that indicate where people

are looking during sports events, fi lms, social

interaction and other activities.

A suitable cheap configurable eyetracker may

provide the affordances that meet medical needs and

thus help us better understand the underlying social

models of disabi l i ty.

A results page is under development to help the user

evaluate and reject faulty cal l ibration.

The mk2 has the PS3 eyecam in the middle of field of

view (FOV), which obstructs the view, but cal l ibration

is simple. The Picameral eye-tracker needs a new

matrix transformation, which wil l improve accuracy of

the iris centre. So unfortunately, for now the

eyetracks i l lustrated are from the mk2 data,

overlaying video from the RPi viewcam.

There are many theories of colour and perception.

The Ecological approach to visual perception by

James J Gibson's describes the sighted animal

moving in the natural environment. We fol low his

bel ief in this strategy guided by the principal of

Gestalt, and the RPi with camera may afford the

opportunity to test and develop his hypothesis.

Cartography involves visual ising complex data sets,

that may include finance, economics, ecology, game

theory and is not l imited to geography.

My introductory visual isation is maintained at

http://www.peepo.com, where you can play Go, the

ancient oriental game of strategy that is played on a

1 9x1 9 board. Go is easy to learn but hard to master,

and whilst more complex than chess, computers

using Monte Carlo Tree Search are making progress.

The eye-tracker described is intended to be used to

contrast a study into how different users understand

and communicate using maps, with Go as the

metaphor, against another study of eye use in vivo. I

encourage others to contribute their own ideas.

For now the Picameral eye-tracker is a proof of

concept.

More detai ls and videos on the website

http://www.gnote.org

contact: Jonathan Chetwynd jay@peepo.com

1 2

SKILL LEVEL : INTERMEDIATE

Tony Goodhew

Guest Writer

USB ARDUINO LINK
Add analogue ports to your Raspberry Pi

Using a temperature sensor
and Arduino analogue pins

USB Arduino link - Part 3

In previous months I have explained how to set

up your Raspberry Pi so that it could

communicate with an Arduino via a serial USB

cable using Nanpy, how to read digital and

analogue values from switches and

potentiometers attached to the Arduino’s pins,

and how to write values to these same pins to

control LEDS and a Liquid Crystal Display

(LCD), al l using Python. This month I wi l l explain

how to read temperatures and suggest a few

ideas for you to try to increase your ski l ls using

what has been covered so far.

Reading temperature

A TMP36 is an inexpensive and very easy to use

temperature chip which looks l ike a transistor. I f

you look at the flat face of the chip, etched with

its name, with the legs pointing downwards the

left leg goes to 5 volts, the right leg to GND and

the centre leg to one of the analogue pins on the

Arduino. (See the photograph.) I used A0. Take

care to connect it the correct way round after

reading the specification at

http://oomlout.com/parts/IC-TMP36-

datasheet.pdf

and

http://learn.adafruit.com/tmp36-temperature-

sensor

for even more information.

I t has a temperature range from -40oC to 1 25oC

with a typical accuracy of ±2oC. I t outputs

1 0mV/oC with a 500 mV offset to al low for

negative temperatures. To use the chip you read

the analogue value and convert this to a voltage

between 0 and 5V. The program carries out the

necessary calculations to convert the voltage to a

temperature in degrees Celsius.

Due to the variance of the TMP36, the

temperature calculated could be up to 2 degrees

out in either direction. There could also be small

1 3

errors in the analogue to digital converter in the

Arduino’s chip. I f you need a more accurate

reading you can calibrate the system. Connect

the TMP36 with longer wires. Place the sensor in

the corner of a polythene bag, about 8-1 0 cm

long, and close the top tightly with an elastic

band to keep out the water. Place several ice

cubes in a glass with some water, and immerse

the sensor in the water and melting ice. Wait

several minutes unti l the glass, sensor, water

and ice settle to the temperature of melting ice.

Run the program again. I f the results show a

consistent 0oC, you are in luck. I f not, change the

value of ‘adjust’ in the script unti l i t gives an

average voltage of 0.5 volts whi le the sensor is in

the melting ice and water.

#!/usr/bin/env python

TMP36 temperature sensor

Read values from Analogue pin A0

from nanpy import Arduino

from nanpy import serial_manager

serial_manager.connect('/dev/ttyACM0')

from time import sleep

tmp36 = 14 # Temp Sensor on A0 - Analog input

adjust = 0 # I needed -0.025 here

print"Reading temperature"

for i in range(0,40):

Analog input

val = Arduino.analogRead(tmp36)

Convert to voltage

volts = val * 5.0 /1023 + adjust

Calculate temperature

tempC = volts * 100 - 50

tempC2 = int(tempC)

print val, volts, tempC, tempC2

sleep(0.3)

To watch the temperature change you can pinch

the sensor with warm fingers or add warm water

to the glass if the sensor is sti l l in the plastic bag.

The analogue to digital converter has 1 0 bit

accuracy so each bit wi l l represent 5V /1 024 =

0.00488 Volts. This is equivalent to just under ½
oC so the set up can only read accurately to the

nearest whole degree C.

Things to try

Extend the multiple buttons circuit with an extra

button and resistor. Then change the program to

al low for an extra floor.

I f you enjoy soldering you could transfer the five

buttons and resistors onto a piece strip board –

see photograph. Arrange four of the buttons in a

diamond pattern to indicate’ Up’, ‘Down’, ‘Left’

and ‘Right’ . Place the fifth button either in the

centre of a large diamond or at the side of a small

diamond for ‘OK’, ‘Stop’ or ’Fire’ . The i l lustration

shows, “one I made earl ier”. The copper strips

are vertical on the back. There are five horizontal

connections. Only one track was cut on the

underside. The cut track is under the ‘Up’ button

and marked with the magenta blob. This wil l be

useful for the fol lowing exercises but the ‘in-l ine’

version on breadboard wil l work as well .

Set up three or more LEDs with resistors (330R

or more – we do not need them to be too bright)

in a row on digital pins.

a) Light the leftmost LED and make the l ight

appear to move from left to right and back again

by pressing two buttons - Right & Left. Use Ctrl-

C to stop the program.

1 4

Digital temperature
sensors

While it is possible to add analogue temperature

sensors to the Raspberry Pi, there are also

several digital sensors avai lable. For example, in

Issue 5 of the MagPi a Sparkfun tmp1 02

temperature sensor is connected to a Raspberry

Pi over the I2C interface. There is also the

possibi l i ty of using a sensor with an USB

interface such as in the PATOS article in Issue

1 6 of the MagPi. Lastly, there is the DS1 8B20

digital temperature sensor avai lable from

Adafruit.

The DS1 8B20 is supplied as a three pin

component with a 4.7kOhms resistor or as a

prepackaged waterproof unit. The DS1 8B20 is

supported by the LINUX kernel present in the

Raspbian distribution. The University of

Cambridge have put together some instruction

on how to use this temperature sensor:

http://www.cl.cam.ac.uk/projects/raspberrypi/tuto

rials/temperature/

Once the DS1 8B20 is connected to the

appropriate GPIO pins, the temperature sensor

wil l appear as a device under the system bus.

The temperature can then be read using cat or

using Python to open the device using a simple

fi le open() function cal l fol lowed by read() .

b) Control the brightness of one LED by two

buttons – Up & Down. Use another button to stop

the program. Note: the PWM pins are marked

with ‘~’ : 3, 5, 6, 9, 1 0 & 1 1 .

c) Combine the first two ideas so that you can set

the individual brightness of al l the LEDs with 4

buttons. Use the other button to stop the

program.

Change the temperature program so that it

changes output from oC to oF while a button is

held down. (Move the output to the LCD if you

have one.)

Modify the LCD counting program and control

the two sets of numbers with the buttons rather

than a counted loop. Use one button pair to

increase/decrease the left hand number on the

display and another pair to control the right

number independently. Stop the program if either

number reaches 0.

I f you do not have an LCD you could write a

similar program but output the two numbers in

columns on your monitor – one l ine each time a

button is pressed. (Can you keep the tens and

units l ined up vertical ly?) Stop the program with

Ctrl-C, but trap the error messages.

There is currently a forum on using the Arduino

with Nanpy at:

http://www.raspberrypi.org/phpBB3/viewtopic.ph

p?p=368522#p368522

You can use it to ask for help from other users.

Contact me by email via arduinol ink@gmail .com

with feedback, suggestions or questions.

Thanks again to Andrea Stagi for producing

Nanpy.

http://shop.pimoroni.com

1 6

SKILL LEVEL : ADVANCED Philip Munts

Guest Writer

ANALOG CONTOL
Using an ARM Cortex-M0 microcontroller

SPI Agent Firmware

Introduction

In The MagPi Issue 14, I introduced the

LPC1114 I/O Processor Expansion board for the

Raspberry Pi. In this issue we will examine the

factory default SPI Agent Firmware for the

LPC1114 and some of the things than can be

done with it, particularly with the analog inputs.

During the manufacturing test process, SPI

Agent Firmware is written to the LPC1114

microcontroller on each new expansion board.

The firmware is used for performing

manufacturing tests to ensure the expansion

board is fully functional. It can be used for many

other interesting projects as well. We will explore

how to measure analog signals with C and

Python programs, using the LPC1114 I/O

Processor expansion board SPI Agent Firmware.

SPI (Serial Peripheral Interface)

SPI (Serial Peripheral Interface) is an industry

standard point to point serial communication

protocol used between microprocessors and

peripheral devices. SPI is capable of medium

speed (tens of megahertz) clock rates and is

fairly simple to implement. SPI systems are

organized in a master/slave fashion, where one

device (normally a processor of some type) is

designated the master and completely controls

the communication process. One or more

peripheral devices are designated as slaves

(figure 1).

Figure 1 MSPI Connections

There are three I/O signals shared among all

peripheral devices on an SPI bus, plus a

dedicated chip select signal for each slave

device. An SPI bus requires 3+n I/O signals,

where n is the number of peripheral devices.

The Raspberry Pi P1 expansion connector

brings out one SPI bus with two chip select

signals, so two different peripheral devices can

be controlled by the Raspberry Pi, which is

always the master. The LPC1114

microcontroller on the I/O Processor Board is

1 7

configured by firmware to act as an SPI slave,

using the first chip select signal from the

Raspberry Pi.

Since the SPI bus is completely controlled by the

master, it does not provide any mechanism for

the peripheral device to signal a need for

attention. Either the master must continually

send a polling message to the slave, or some

other signal external to the SPI bus, such as a

dedicated interrupt line, must be used to signal

the master. The LPC1114 I/O Processor

expansion board has two interrupt lines

connected between the LPC1114 microcontroller

and the Raspberry Pi.

SPI Agent Firmware

I have defined a simple SPI message protocol

that the Raspberry Pi uses to send commands to

the LPC1114 microcontroller. Each transaction

consists of a 3-word (12-byte) command

message sent to the LPC1114, a short delay,

and a 4-word (16-byte) response received from

the LPC1114. See the source code header file

include/spi-agent.h in the LPC1114 I/O

Processor expansion board source tree for the

data structures that implement this protocol. The

protocol defines commands for configuring the

LPC1114 GPIO pins on the screw terminal

block, reading from inputs, writing to outputs,

and the like.

Linux provides some system calls for issuing SPI

transactions. C programs can call the ioctl()

library function with special SPI specific

parameters to make these system calls. The

ioctl() function is pretty ugly to deal with, so I

have written some wrapper functions in

common/RASPI_spi.c to make it easier. The

functions SPI_open(), SPI_close(), and

SPI_transaction() are provided. Most of the C

demonstration programs for the LPC1114 I/O

Processor expansion board use these three

functions for communicating with the LPC1114

microcontroller.

SPI Agent RPC Servers

The SPI wrapper functions provide an efficient

way for a C program to issue SPI commands to

the LPC1114 microcontroller, but it is not as

straightforward for other languages such as

Python. By further wrapping the SPI services

with an RPC (Remote Procedure Call) server, it

is possible to both make them easier to call from

Python (or other languages) and make them

network accessible.

A RPC client program issues local subroutine

calls that are transformed by the RPC library into

network messages. These messages are sent to

an RPC server program running on the same

machine or another machine somewhere else on

the network. The RPC server program

transforms the incoming messages (using the

RPC library again) from the client back into local

subroutine calls that perform some service.

Then the RPC server sends return values and/or

status back to the RPC client. RPC essentially

allows you to split a single program into parts

that run on different machines.

Two different RPC servers are provided for the

LPC11114 I/O Processor expansion board. For

this discussion we will use the XML-RPC server.

XML-RPC passes data over the network using

XML (eXtensible Markup Language) messages

over HTTP (HyperText Transfer Protocol).

Python has native XML-RPC support, and it is

very easy to use. Many other programming

languages (especially C, C++, Java, and C#)

also have XML-RPC support available.

1 8

The following Python 3 program shows how to

read a single analog input on the LPC1114 I/O

Processor expansion board:

The result, a number between 0 and 1023

inclusive, indicates the magnitude of the analog

voltage at terminal GPIO0 / P1.0.

Analog Joystick Demo

For demonstration purposes I connected a

Parallax #27800 (Radio Shack #275-030) to the

LPC1114 I/O Processor expansion board.

Figure 2 shows the connections between the

joystick and the expansion board terminal block.

Figure 2 MJoystick Connections

The sample program joystick.py, in the src/adc

directory of the LPC1114 I/O Processor

expansion board source tree, reads the position

of the joystick from the P1.0 and P1.1 analog

inputs, and moves a turtle in a turtle graphics

window around (Figure 3). Later in another

article, we will show how to use the joystick for

more sophisticated control purposes.

Figure 3 MTurtle Graphics Screenshot

A Raspberry Pi Experiment Board

Figure 4 shows one of several Raspberry Pi

experiment boards I have made with the joystick

attached. The Raspberry Pi, the LPC1114 I/O

Processor expansion board, and a solderless

breadboard are mounted on a piece of wood.

The circuit boards are mounted with #4 (3 mm)

wood screws and plastic standoffs. The

solderless breadboard came with an adhesive

pad and is just stuck to the wood.

Links

LPC1114 I/O Processor support info, including

how to buy one:

http://munts.com/rpi-lpc1114

XML-RPC information:

http://www.xmlrpc.com

Python 3 XML-RPC client library documentation:

http://docs.python.org/3.2/library/xmlrpc.client.ht

ml

Parallax 2-axis joystick information:

http://learn.parallax.com/KickStart/27800

import spi_agent

i mport xmlrpc.client

s = xmlrpc.client.ServerProxy('http://localhost:8080/RPC2')

s.spi.agent.transaction(spi_agent.SPICMD_CONFIGURE_ANALOG_INPUT, spi_agent.LPC1114_GPIO0, 0)

x = s.spi.agent.transaction(spi_agent.SPICMD_GET_ANALOG, spi_agent.LPC1114_GPIO0, 0)[2]

print(str(x))

1 9

Figure 4 – ‘ ‧‹ ‶ ‖‿‸‸   ‒‖  ῶῶῶΌ ‾‶″ ‸ ‹q  ‵ ‧‸

http://www.panavise.com
http://shop.pimoroni.com

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

22

SKILL LEVEL: ADVANCED

Matthew
Hollingworth
Guest Writer

UNTETHERING
One step beyond standard Wi-Fi

Long-range wireless with the RPi900

We all know the benefits of Raspberry Pi for

hardware projects: easy to program, low power,

and cheap almost to the point of disposable. Add

a Wi-Fi dongle and you can put one anywhere

around the house. But how about further afield? I

wanted to put a Raspberry Pi on a local hi l l top

and sti l l be able to log in. This would be great for

weather stations, webcams and a host of other

remote telemetry projects.

A good solution for this sort of long-range

communication is to use a "radio module", a

plug-in circuit which communicates wirelessly

with others in its network. These modules

typical ly use the 900 MHz or 2.4 GHz radio

bands, which are avai lable for l icense-free use in

many countries.

I chose the DNT900 module from RFM. At $70

it's very affordable, and can work at extremely

long range up to 40 miles l ine-of-sight, RFM

claims. (There's also a compatible 2.4 GHz

module for use in Europe, where 900 MHz is

restricted.) The radios can be connected in

pairs, or in a more complex network. You can

also operate a radio as a repeater to extend

range. The radios even include analog and

digital I /O for control l ing things and making

simple measurements.

I designed a prototype circuit board which holds

the DNT900 radio module and connects to the

Raspberry Pi 's GPIO header. The serial port

(UART) pins al lows the Raspberry Pi to

exchange data with with radio. I included a 5V

power supply, sufficient for both the Raspberry

Pi and DNT900 radio and able to be supplied

directly from a 1 2 V solar power system.

One feature I wanted was for the remote radio to

be able to control power to the remote Raspberry

Pi. This would be very useful for turning the

Raspberry Pi off when not needed, saving

battery power. Later, I also added a real-time

clock, a useful feature which al lows the

Raspberry Pi to keep time without a network

23

connection.

Once I had a working prototype, my attention

turned to software. With one Raspberry Pi acting

as a base station, how would I configure the

radio and exchange data with the remote

Raspberry Pi? The DNT900 radio has a special

command protocol for doing just this. You can

manually construct these commands and sent

them to the Raspberry Pi serial port, but this

quickly becomes tedious. I decided to do it the

right way: create a Linux driver.

In this case the driver turned out to be a "l ine

discipl ine". This is an obscure bit of kernel code

which acts as

a "translator"

for the serial

port.

Basical ly, i t

implements

the DNT900

command

protocol so

you don't have

to. Writing the

code was a

big project in

its own right,

and the end

results were

great. When

the driver is

loaded, al l the

configuration

registers for the radio are presented as attribute

fi les in the sysfs fi le system, so changing them is

easy. For every radio which is connected, a

"virtual TTY" is presented, meaning that sending

data to a remote Raspberry Pi is as simple as

writing to its corresponding TTY device fi le.

What's nice about the TTY interface is that I can

use it to set up a ful l internet connection for the

remote Raspberry Pi (albeit a slow one). For this

I use Point-to-Point Protocol, the same as for

dialup internet. Just a few extra steps to set this

up, and I can SSH into the remote Raspberry Pi

using only the radio l ink. This is great for

maintenance, since I can reconfigure software on

the Raspberry Pi without needing physical

access to it. Handy for a remote location!

For my base station, I boxed up one of my

boards and a Raspberry Pi and bolted in to my

roof, along with a solar panel, battery and

antenna. I have yet to test the ful l range of the

radio, but I can certainly reach the local hi l l !

Working on this project is great fun. I 've

documented my design at http://rpi900.com. The

site includes technical tutorials on setting

everything up as well as tips on choosing an

enclosure, antenna and solar power system for

your remote Raspberry Pi. RPi900 boards are

also avai lable to purchase from the site.

22

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

Buttons and switches with the
Raspberry Pi

Buttons and switches are a fundamental part of

‘physical’ computing. This beginner’s tutorial is

designed to teach the basics of physical operation

and programming with the Raspberry Pi using a

simple momentary switch setup.

The tutorial requires a few simple components that

are avai lable from ModMyPi (product codes in

brackets):

- Medium Breadboard (BB2) – For laying out our

components & circuit.

- Male to Female Jumper Wires (JW8) – For jumping

between the RPi & breadboard.

- PCB Mount Switch (TAC001) – A four point basic

momentary switch.

- ModMyPi’s Ridiculous Resistor Kit (RK995) – to

protect your Pi & calibrate the float voltage.

- 1 0KΩ Resistor - (Brown, Black, Black, Red, Brown)

- 1 KΩ Resistor - (Brown, Black, Black, Brown,

Brown)

- Breadboard Jumper Wire Kit (1 40KI) – For easy

jumping on the breadboard.

The circuit

The purpose of this circuit is to enable the Raspberry

Pi to detect a change in voltage and run a program

when the button (Switch 1) is pressed. This requires

three GPIO pins on our Raspberry Pi: the first wi l l

provide a signal voltage of 3.3V (Vcc), the next wil l

ground the circuit (GND), and the third wil l be

configured as an input (GPIO IN) to detect the

voltage change.

When a GPIO pin is set to input, i t doesn’t provide

any power and consequently has no distinct voltage

level; defined as ‘floating’ . We need the pin to be

capable of judging the difference between a high and

low voltage, however in a floating state it’s l iable to

incorrectly detect states due to electrical noise. To

enable the pin to see the difference between a high or

low signal we must ‘tie’ that pin, cal ibrating it to a

defined value; 3.3V in this case!

To tie the input pin, we connect it to the Vcc 3.3V pin,

hence when Switch 1 is open, the current flows

through GPIO IN and reads high. When Switch 1 is

closed, we short the circuit and the current is pul led

to GND; the input has 0V, and reads low! The large

R1 (1 0kΩ) resistor in this circuit ensures that only a

https://www.modmypi.com/shop

23

l i ttle current is drawn when the switch is pressed. I f

we don’t use this resistor, we are essential ly

connecting Vcc directly to GND, which would al low a

large current to flow, potential ly damaging the Pi! To

make the circuit even safer in case we get something

wrong, we add the R2 (1 kΩ) resistor to l imit the

current to and from GPIO IN.

The switch

Four point switches are wired in a very similar

manner to two point switches. They’re simply more

versati le, as you can have multiple isolated inputs into

the same switching point. Checking the diagrams,

Pins 1 & 2 are always connected, as are Pins 3 & 4.

However, both pin pairs are disconnected from each

other when the button is not pressed e.g. Pins 1 & 2

are isolated from Pins 3 & 4. When the button is

pressed the two sides of the switch are l inked and

Pins 1 , 2, 3 & 4 are al l connected!

In ‘momentary’ switches the circuit disconnects when

pressure is removed from the button, as opposed to

‘toggle’ switches when one push connects and the

next push disconnects the internal switch circuit.

Where does it all go?

WARNING. When hooking up to GPIO points on your

Raspberry Pi care must be taken, as connecting the

wrong points could permanently fry your Pi. Please

use a GPIO cheat-sheet, and double check

everything before switching it on. I wi l l denote each

GPIO point by its name, and physical location, for

example GPIO P1 7 is actual ly located at Pin 1 1 ,

denoted: GPIO P1 7 [Pin 1 1]. The irregularities are a

result of the pin names being referenced by the on

board chip rather than their physical location.

1 . Connect Pi to Ground Rail . Use a black jumper

wire to connect GPIO GND [Pin 6] on the Pi to the

Negative rai l on the breadboard – the rai l on the edge

of the board with the negative sign (-) .

2. Connect Pi 3.3V to Positive Rail . Use a red jumper

wire to connect GPIO 3.3V [Pin 1] on the Pi to the

Positive rai l on the breadboard – the edge rai l with the

positive sign (+).

3. Plug your switch in. When breadboarding, make

sure al l of the legs are in separate rows. To achieve

this straddle the central channel on the breadboard.

4. Add 1 0kΩ Resistor. Connect this from Switch Pin

1 , to the positive (+) rai l of the breadboard.

Orientation of standard fi lm resistors is unimportant.

5. Connect Switch to Ground. Use a breadboard

jumper wire to hook Switch Pin 3 to the ground (-)

rai l .

6. Connect Switch to 1 kΩ Resistor. Add this resistor

between Switch Pin 1 and the 1 0kΩ Resistor and

take it to a clear rai l .

7. Connect Switch to Signal Port. We’ l l be using

GPIO P1 7 to detect the 3.3V signal when the switch

is pressed. Simply hook up a jumper between GPIO

P1 7 [Pin 1 1] on the Pi and the 1 kΩ Resistor rai l .

That’s our circuit bui lt! Next time, we’ l l write a simple

program in Python to run when we press the switch!

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

http://milocreek.com

http://swag.raspberrypi.org

28

SKILL LEVEL : INTERMEDIATE

John Shovic

Guest Writer

XML for the Raspberry Pi: Part 3

Introduction

This series of articles discusses the use of XML
on applications for the Raspberry Pi. Part One
covered what is XML and the format of the data
structures, and Part Two covered bui lding and
parsing XML in Python. In Part Three we wil l see
how XML is used as a client / server application,
RasPiConnect. RasPiConnect is an iPad/iPhone
app that connects and displays information for
any number of Raspberry Pi 's via a defined XML
interface.

The Application

Our example application consists of a cl ient and
server. The cl ient is an Apple App running under

iOS written in Objective C and the server is a
Raspberry Pi server (the Server) program written
in Python. The purpose of the RasPiConnect
App (the Client) is to display information and
control your Raspberry Pi from an iPad or iPhone
device. The Python code mentioned in this article
can be found at https://github.com/milocreek.

What is XML being used for in this
program?

XML is being used for three purposes in this
program. 1) For the communications channel
(over HTTP) from the App to the Raspberry Pi.
2) For the communications channel from the
Raspberry Pi to the App (over HTTP) and 3) For
persistent program and screen configuration
storage in the App.

The communications channels

The Client communicates with the Server by
sending and receiving HTTP. The Objective C
code on the Apple iOS device for sending and
receiving is beyond the scope of this article. The
Python code on the Server for receiving and
sending XML code is very straight forward. In the
Server we use the web.py l ibrary from webpy.org.
This is a l ight weight webserver program readi ly
avai lable by running the fol lowing command on
your Raspberry Pi.

http://www.milocreek.com
https://github.com/milocreek

29

sudo apt-get install python-webpy

There is a bi-directional communication channel
between the Server and Client. Both directions
are handled by HTTP requests. The Client sends
requests for data and action with al l the requests
grouped together. The XML sent from the Client
to the Server looks l ike this:

<XMLObjectXMLRequests>
<XMLCOMMAND>
<OBJECTSERVERID>LT-1</OBJECTSERVERID>
<OBJECTNAME>CPU Text and Label
</OBJECTNAME>
<OBJECTTYPE>1</OBJECTTYPE>
...

</XMLCOMMAND>
...

</XMLCOMMAND>
</XMLObjectXMLRequests>

This XML contains multiple requests to the
Server for retrieving information and sending
action requests to the Server. Note the multiple
<XMLCOMMAND> entities in the structure.

The returning XML from the Client looks very
similar.

<XMLRESPONSES>
<XMLCOMMAND>
...

</XMLCOMMAND>
<XMLCOMMAND>
<OBJECTSERVERID>LT-1</OBJECTSERVERID>
<RESPONSE>
<![CDATA[43.31, 43.31, CPU Temp (deg

C)]]>
</RESPONSE>
...

</XMLCOMMAND>
</XMLRESPONSES>

Parsing the XML

Parsing this XML into the individual entities
(<XMLCOMMANDS> above), is a simple use of the
ElementTree Python l ibrary as shown previously
in Part Two of this article. Once the requests
have been parsed and validated, the server
executes the requests one at a time, whi le
bui lding a new XML structure containing the
responses to the commands. The
<XMLResponses> structure is then sent to the
Client using one HTTP connection rather than
multiple connections.

...
class RasPi:

def POST(self):
web.header('Content-Type',

'text/html')
incomingXML = web.data()
root = ET.fromstring(incomingXML)
iterate through all the values
for element in

root.findall('XMLCOMMAND'):
...

Building XML to send to the Client

Building the XML to be sent back via the HTTP
request from the Client to the Server is done by
constructing a string of concatenated XML
commands and then returning the string as part
of the web.py POST HTTP request.

start of building the XML responses
outgoingData="<XMLRESPONSES>"

...
outgoingData +="<XMLCOMMAND>"
...
outgoingData +="</OBJECTTYPE>"
outgoingData +="<OBJECTID>"
outgoingData += "%i" % objectID
outgoingData +="</OBJECTID>"
done with FOR loop

outgoingData+="</XMLRESPONSES>"
return outgoingData

Receiving and sending the XML

In web.py, the incoming XML is placed in a string
as above and then parsed. The responses are
sent back to the cl ient from the POST function by
returning a string.

Conclusion

XML is a very useful means for storing and

transmitting data across disparate computer

systems. I t is usable by large and small

computers al ike. To learn more about using XML

on a Python based platform try the fol lowing

websites:

http://docs.python.org/2/l ibrary/xml.etree.elementtree.html

http://el i .thegreenplace.net/201 2/03/1 5/processing-xml-in-

python-with-elementtree

and a tutorial video on elementtree:

http://www.youtube.com/watch?v=LNYoFo1 sdwg

http://docs.python.org/2/library/xml.etree.elementtree.html
http://eli.thegreenplace.net/2012/03/15/processing-xml-in-python-with-elementtree
http://www.youtube.com/watch?v=LNYoFo1sdwg

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

August's Winner!
The winner of a new 51 2MB Raspberry Pi Model B plus an exclusive Whiteberry PCSL case,
1 A PSU, HDMI cable, 1 6GB NOOBS memory card, GPIO Cobbler kit, breadboard and jumper
wires is Russ Lovering of Plymouth!

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there is one MASSIVE prize!

The winner wil l receive a new Raspberry Pi

51 2MB Model B, an exclusive Whiteberry

PCSL case, 1 A PSU, HDMI cable, 1 6GB

NOOBS memory card, GPIO Cobbler kit,

breadboard and jumper wires!

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th October 201 3.

Winners wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

OCTOBER COMPETITION

30

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Creative Coding on the Raspberry Pi with openFrameworks

When: Starts Friday 1 1 th October 201 3, 6.00pm and continues al l weekend
Where: Frank-Ratchye STUDIO for Creative Inquiry, Pittsburgh, PA, USA

A weekend of teaching, learning, hacking and making with the Raspberry Pi and openFrameworks.

Tickets from: http://eventbrite.com/event/81 7361 6507

Leicester Raspberry Jam

When: Saturday 26th October 201 3, 1 2.00pm unti l 2.00pm
Where: Phoenix Digital Arts Centre, 4 Midland Street, Leicester, LE1 1 TG, UK

Bringing together Raspberry Pi computers, projects and a demonstration of a 3D printer.

www.facebook.com/LeicesterDigitalMakers and www.eventbrite.com/event/728641 0851

Stevenage Raspberry Jam

When: Saturday 26th October, 1 0.30am unti l 1 .00pm
Where: North Herfordshire College, STEM Centre, Monkswood Way, Stevenage, SG1 1 LA, UK

Featuring a showcase area for al l things Raspberry Pi.

Tickets from: stvraspberryjam-eorg.eventbrite.co.uk

Learning Computer Science with the Raspberry Pi

When: From Wednesday October 30th at 1 2.00pm continuing to November 2nd

Where: The LAB Miami, 400 Northwest 26th Street, Miami, FL 331 27, USA

Programming for Non Programmers: October 30th - adults; October 31 st - educators. Learn prgramming rapidly:

November 2nd - young people. Further information: http://labraspberrypiworkshops-es2.eventbrite.com

Exeter Raspberry Jam

When: Saturday 1 2th October 201 3, 1 0.00am unti l 1 2.00pm
Where: Hoskins Room, Exeter Central Library, Castle Street, Exeter, EX4 3PQ, UK

Featuring displays of projects and robotics, use of GPIO and helpdesk. Bring your own project or come and

experience the Raspberry Pi for the first time. Al l welcome. http://goo.gl/EjxJDF

31

http://labraspberrypiworkshops-es2.eventbrite.com
http://stvraspberryjam-eorg.eventbrite.co.uk
http://eventbrite.com/event/8173616507
http://www.facebook.com/LeicesterDigitalMakers
http://www.eventbrite.com/event/7286410851
http://goo.gl/EjxJDF

32

SKILL LEVEL : ADVANCED

W. H. Bell

MagPi Writer

MEMORY MANAGEMENT
union, malloc() & free()

7 - Unions & dynamic allocation

Welcome back to the C Cave. How did you get on with the chal lenge problem given in Issue 1 3?

Challenge solution

To use the solution, write it to a fi le cal led python.h and put it into the same directory as the C program, make fi le and

Pythia FORTRAN fi le. Then compile and run the program.

Unions

The syntax of declaring a union is the same as that of a struct. However, unl ike a struct, each of the data members

share the same memory space as each other. The amount of memory al located to an union instance is set by the largest

data member. Similar to structs, union data members can be structs, unions or simple types (float, int, etc.) .

The memory al location can be demonstrated with a simple example,

#ifndef PYTHIA_H

#define PYTHIA_H

typedef struct {

int msel;

int mselpd;

int msub[500];

int kfin[81][2];

double ckin[200];

} PYSUBS;

extern PYSUBS pysubs_;

void pyinit_(char *, char *, char *, double *, int, int, int);

void pystat_(int *);

void pyevnt_(void);

void pylist_(int *);

void pyhepc_(int *);

#endif

33

#include <stdio.h>

union share {

int index;

float value;

unsigned char bytes[8];

};

int main() {

union share s;

printf("Size of s = %lu\n",sizeof(s));

printf("Size of s.index = %lu, address of s.index = %p\n",sizeof(s.index),&s.index);

printf("Size of s.value = %lu, address of s.value = %p\n",sizeof(s.value),&s.value);

printf("Size of s.bytes = %lu, address of s.bytes = %p\n",sizeof(s.bytes),&s.bytes);

return 0;

}

where the result of compil ing and running this code should be similar to:

Size of s = 8

Size of s.index = 4, address of s.index = 0x7fff5fbff040

Size of s.value = 4, address of s.value = 0x7fff5fbff040

Size of s.bytes = 8, address of s.bytes = 0x7fff5fbff040

The unsigned char type uses one byte per element in the array. This means that the array uses eight bytes. The int

and float types typical ly use four bytes with the default gcc compiler options. Therefore, an instance of the union uses

eight bytes of memory. Notice that the memory address of each of the data members is the same. Try modifying this

example by exchanging the union for struct. Then re-run it and compare the size and addresses of the data members.

The result wi l l be similar to:

Size of s = 16

Size of s.index = 4, address of s.index = 0x7fff5fbff030

Size of s.value = 4, address of s.value = 0x7fff5fbff034

Size of s.bytes = 8, address of s.bytes = 0x7fff5fbff038

which demonstrates that the memory al location of a struct is sequential and the total size is the sum of the sizes of the data

members.

An union can be useful for encoding or decoding variables in a binary data stream. For example, one of the union

members could be a basic type such as an unsigned char array. Then the basic type is written or read from a binary fi le,

whi le the more complex type is used within the program.

Dynamic memory allocation

Sometimes the size of the memory needed for a given stage of a program is not known at compile time. Instead of declaring

a large block of memory when it might not be needed, dynamic memory al location al lows a program to request or free

memory use as needed.

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int *buffer = 0;

unsigned int i, num_elements = 0;

if(argc != 2) {

printf("Usage: %s <number of elements>\n",argv[0]);

return 1;

}

34

sscanf(argv[1],"%u",&num_elements);

if(num_elements == 0) {

printf("Error: the size of the array must be greater than 0\n");

return 2;

}

/* Sleep for 10 seconds. */

sleep(10);

/* Request a block of memory long enough for 1000 integers */

buffer = (int*)malloc(sizeof(int)*num_elements);

/* Check if the request was successful or not. */

if(!buffer) {

printf("Error: malloc failed\n");

return 3;

}

/* Now use the memory as needed. */

for(i; i<num_elements; i++) {

buffer[i] = i;

}

/* Print the last element to show that it is used. */

printf("buffer[%u]=%u\n",num_elements-1,buffer[num_elements-1]);

/* Sleep for 10 seconds. */

sleep(10);

/* Free the memory allocated to buffer. */

free(buffer);

/* Sleep for 10 more seconds. */

sleep(10);

return 0;

}

This program demonstrates how to request a block of memory on the heap and then free it again. Compile the program

using gcc, then open another terminal window and type top. In the first terminal window, run the program

./dynamic-allocation 10000000

and then watch what happens using top. The memory al location of the program is initial ly quite small . Then when the array

is declared, the size wil l jump up. Then after another ten seconds, the size of the example program wil l drop down again.

The function malloc returns a void pointer and the function free takes a void pointer as the single input variable. Since

malloc returns a void pointer, the example program casts the point pointer to the type of pointer needed. I f the request for

more memory fai ls, then malloc returns nul l which is zero as an integer or false as a boolean expression. Nul l could be

returned if there is a memory leak in the program that uses up all of the avai lable memory or if the computer has no more

memory avai lable. A memory leak is caused when memory is requested, but is not freed. I f the leak is inside a loop, the

amount of memory the program uses can increase quickly. Unl ike variables on the stack (variables defined non-

dynamical ly) , the variables on the heap are not automatical ly cleaned up. The heap is outside of the scope of a given

function and must be explicity cleaned up with free. When free is cal led, the memory is released back to the system but

the pointer is not set to be nul l . Therefore, if malloc and free are used within a loop the pointer should be set to nul l

afterwards, to al low a test on the pointer after the next malloc cal l .

Dynamic memory al location memory functions in C are declared in the stdlib.h header fi le. Type man malloc for more

information on the dynamic memory functions.

35

Scope

A variable is said to go out of scope when the function it is declared in finishes. For example,

void fun() {

int i = 0;

}

the variable i goes out of scope at the end of the function fun. This means that the variable i is no longer al located

memory and cannot be used by an external program. Do not try to access the memory al location of i outside the function

fun. Attempts of the form

include <stdio.h>

int* fun() {

int i=0;

return &i; /* Return the memory address of i. Do not do this! */

}

int main() {

printf("%p\n",fun()); /* Print the memory address of i within fun() */

return 0;

}

wil l cause compilation warnings and may result in unexpected crashes. However, if a pointer is assigned the address of

memory on the heap inside a function, then it can be accessed afterwards.

#include <stdio.h>

#include <stdlib.h>

int* fun() {

int *i=0;

i=(int*)malloc(sizeof(int));

return i;

}

int main() {

int *p = 0;

p = fun();

printf("%p\n",p);

free(p);

return 0;

}

After the function cal l , i t is sti l l necessary to cal l free to release the dynamical ly al located memory.

Challenge problem

Write a program that uses dynamic al location to request memory and then release it. Use the sleep function cal l to sleep

for one second before cal l ing malloc or free. Put the malloc and free function cal ls inside a loop, to generate a varying

memory usage. Then use the examples given at the end of the C Cave in Issue 6 and the beginning of the C Cave in Issue

9, to monitor the memory usage of the test program.

36

SKILL LEVEL : BEGINNER

W. H. Bell

MagPi Writer

GOING BALLISTIC
Target practice arcade game

Physics of a cannon ball

Welcome back to the Scratch Patch. This

month's article is another simple arcade game.

Similar to the game in Issue 1 3, there is plenty of

scope for expanding or modifying this game too.

The idea of the game is to try to hit the drum with

the cannon ball . The cannon is control led by the

cursor keys and the spacebar, where the left and

right keys change the angle of the cannon, the up

and down control the initial speed of the ball and

the spacebar fires the cannon.

There are three sprites in this program: the cannon, the
cannon ball and the drum. The cannon was drawn
using the rectangle tool. Different shades of grey were
used to give the appearance of a round barrel. Then
the picture was copied using the Copy button. The
original picture was named ready and the copy was
named fired. A muzzle flash was added to the fired
costume.

The cannon ball is a marble taken from the Scratch
l ibrary. The Drum is also from the Scratch l ibrary.
Both of these sprites were resized to the correct size.

The gun carriage is part of the stage, where the
cannon was positioned on top within the cannon script.

37

Cannon script

The cannon script starts by setting the position and

costume of the cannon to the default. Then the script

initial ises al l of the global variables with 0. The fire
variable is used as a boolean, where 0 is false and 1

is true. The start_velocity is the initial velocity

given to the cannon ball , when the ball is fired. The

centre of the cannon is stored in the cannon_x and

cannon_y variables. The cannon_angle is the

angle in degrees, where zero implies that the cannon

barrel is pointing straight up.

After the initial isation, the cannon reacts to either the

cursor keys or the spacebar. Pressing the left and

right cursor keys causes the cannon to rotate one

degree to the left or one degree to the right. Pressing

the up cursor key causes the initial speed given to the

ball to be increased by 0.2, whereas pressing the

down cursor key reduces the speed as long as it is

greater than zero.

Pressing the spacebar

wil l cause the cannon to

fire if fire is also set to

zero. The fire
variable is used to

prevent the cannon ball

from being fired when

the cannon ball is in

fl ight. When the

cannon is fired, the

costume of the cannon

is changed to show a

flash. Then the fire
variable is set to 1 and

the global variables that

describe the position of

the cannon are set.

After 0.5 seconds the

flash is removed by

resetting the costume.

38

Cannon ball scripts

The cannon ball has two scripts, one to hide the ball

when the green flag is pressed and another to control

the motion of the ball . When the spacebar is pressed,

the global variables cannon_x, cannon_y and

cannon_angle are used to set the position of the ball

and its initial velocity. Unl ike other programming

languages that use radians, Scratch uses degrees for

the functions sine and cosine. The 90 degree offset is

used to convert the angle of cannon, such that zero

degrees corresponds to the cannon pointing horizontal ly

to the right. The sine and cosine functions are then

used to set the initial velocity components.

The cannon ball moves through the air unti l i t touches either the colour green, the edge of the

stage or the Drum. While none of these conditions are met, the vertical velocity component is

decremented by 0.05. This decrementation corresponds to the acceleration due to gravity. Next

the current x and y components of the velocity are used to move the ball through the air. The

speed with which the repeat-unti l loop executes corresponds to the time component.

The ball is hidden unless it has completely cleared the cannon barrel. This is achieved by

checking if the ball is not touching grey and is touching the colour of the sky. Lastly, when the

script finishes, the global variable fire is set to zero to allow the cannon to be fired again.

39

Rotating the cannon

In order for the cannon to be rotated around the centre of the cannon sprite, the Set costume
center button should be cl icked. Then put the crosshairs for both costumes at the middle of the

sprite.

Projectile motion summary

The motion of a projecti le can be split into vertical and horizontal components. Gravity acts in the

vertical direction as a downward acceleration. In the program documented in this article, air

resistance is neglected. Therefore, the horizontal velocity component is constant and the

horizontal distance the projecti le travels is found by multiplying the initial horizontal velocity by the

time it is in the air. The time the projecti le is in the air is determined as the difference between the

start time and when the vertical position is equal to the ground. While the projecti le is in fl ight,

gravity continues to decrement the vertical velocity unti l the projecti le hits the ground. I f the initial

vertical velocity component is small , i t wi l l not take long for gravity to bring the projecti le down.

Notice that within this simple program the vertical position is evaluated in two steps, rather than in

one equation. There is one step to evaluate the change in velocity and another to update the

horizontal position.

The drum script

There is one drum script, which is

launched when the green flag is pressed.

When the ball is launched, the global

variable fire remains set to one unti l

the bal l touches down on the ground or

the drum. Therefore, combining the

fire variable requirement with touching

the ball sprite implies that the program

wil l enter the if statement once for one

cannon ball fl ight. Once the program has entered the if condition, the drum plays a simple sound

and increments the global variable score by 1 0 points.

Possible extensions

The drum could be replaced with other objects that move around to make the game harder. There

could be a time limit for the player to hit al l of the targets with the cannon. The equation of motion

used in this game does not include drag. Drag can be expressed as a constant force for a given

velocity squared. The problem of estimating the drag could be made harder by introducing wind,

which would cause the relative velocity of the ball with respect to the air to be higher.

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time
We bought a Raspberry Pi a
few months ago, but didn't
real ly know what to do with
it. We wanted something to
learn as a project between
my son and I . Initial ly we
(predictably) instal led media
centres, but couldn't get my
son interested. He was one
of the Facebook zombies. I
happened to drop on your
mag from the Raspberry Pi
website and thanks to you I
now have a son that has
written his first Python script
and is very keen to learn
more. We are now collecting
parts to create our own
robot with camera.
Facebook’s loss is
Raspberry Pi’s gain!

Thank you, thank you.

Scott

P.S. We are learning
together so I have also
written my first Python
script!

My first article in
@TheMagP1 as guest

writer (page 1 2, issue 1 6)
YAY! Pi #MoreThanHappy

Jorge Rance

I got my issues and binder a
while ago (from the
Kickstarter campaign) and
they are so cool. . .thank you.

Randy

I have found The MagPi
very helpful, as I am a
Raspberry Pi beginner
myself. You helped me set
up CUPS printing. :)

When friends tel l me they
are getting a Raspberry Pi,
the two things I recommend
for them are Berryboot and
the MagPi!

Thanks,
Doug Smith

Dear Editor,

I love playing with my
Raspberry Pi (setting up
webcams, learning Python,
etc.) and real ly enjoy doing
the projects featured in The

MagPi. I am interested in
learning electronics and
would l ike to incorporate
this into future projects with
my Raspberry Pi, but I don't
know where to start. Could
you, or anyone, give me any
advice on where to begin
please?

Many thanks,
Claire

[Ed.: Can you help Claire
out? If so please contact us
with your suggestions and
ideas. Thank you.]

WWhhaatt ddoo yyoouu tthh iinnkk ooff
TThhee MMaaggPPii aanndd tthhee
RRaassppbbeerrrryy PPii?? HHaavvee
yyoouu ggoott aa pprroojjeecctt iiddeeaa
aanndd ddoo nnoott kknnooww
wwhheerree ttoo ssttaarrtt?? WWhhyy
nnoott wwrrii ttee ttoo TThhee
MMaaggPPii aanndd tteell ll uuss
wwhhaatt ii ss oonn yyoouurr
mmiinndd??

