
ESSENTIALS

LEARN TO
CODE

SCRATCH
WITH

MAKE SIMPLE GAMES AND APPLICATIONS
ON

YOUR Raspberry Pi
Written by The MagPi Team

SAVEUP TO25%

THE OFFICIAL
RASPBERRY PI
MAGAZINE

2

https://www.raspberrypi.org/magpi/

How to subscribe:

 magpi.cc/Subs1 (UK / ROW) imsnews.com/magpi (USA)

 Call +44(0)1202 586848 (UK/ROW) Call 800 428 3003 (USA)

Search ‘The MagPi’
on your app store:

3

FREE PI ZERO!
Subscribe in print for six or 12 months to receive this stunning free gift

Pricing
Get six issues:

£30 (UK)

£45 (EU)

$69 (USA)

£50 (Rest of World)

Subscribe for a year:

£55 (UK)

£80 (EU)

$129 (USA)

£90 (Rest of World)

Direct Debit: £12.99 (UK) (quarterly)

Subscribe today & receive:
 A free Pi Zero v1.3 (the latest model)

 A free Camera Module connector

 A free USB & HDMI cable bundle

Delivered with your first issue!

Other benefits:
 Save up to 25% on the price

 Free delivery to your door

	 Exclusive	Pi	offers	&	discounts

	 Get	every	issue	first	(before	stores)

https://www.raspberrypi.org/magpi/subscribe/
http://www.imsnews.com/home.php?page=magPage&pubid=9248
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

oding doesn’t just have to be about typing
in line after line of gobbledygook. Created
by the boffins at MIT, Scratch enables

anyone – children and adults alike – to start
programming within minutes, without any prior
knowledge. You simply drag and drop various code
blocks and link them together like jigsaw pieces
to form logical scripts, unobstructed by confusing
jargon and tricky syntax. Even better, Scratch is
included as standard in the Raspbian operating
system for the tiny Raspberry Pi computer. It can
even be used with the Pi’s GPIO pins to interact
with electronic components and sensors.

In this book, we’ll help you start coding with
Scratch, guiding you step by step through the
process of creating all sorts of projects: games,
animations, quizzes, electronics circuits, and more.
It’ll be educational and also a lot of fun.
Phil King
Contributing Editor, The MagPi magazine

WELCOME TO
LEARN TO CODE
WITH SCRATCH

C

4 [Chapter One]

EDITORIAL
Managing Editor: Russell Barnes
russell@raspberrypi.org
Contributing Editor: Phil King
Sub Editors: Lorna Lynch and Laura Clay
Contributors: Sean McManus, William Bell & Code Club

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay

This book is published by Raspberry Pi (Trading) Ltd., Mount Pleasant House, Cambridge, CB3
0RN. The publisher, editor and contributors accept no responsibility in respect of any omissions
or errors relating to goods, products or services referred to or advertised in this product. Except
where otherwise noted, content in this magazine is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave, London
EC1A 9PT | +44 (0)207 429 4000

THE MAGPI SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337, Bournemouth
BH1 9EH | +44 (0)1202 586 848
magpi.cc/Subs1

https://www.raspberrypi.org/magpi/
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

 [LEARN TO CODE WITH SCRATCH]

5[Don’t Panic] 5[Contents]

CONTENTS

ESSENTIALS

30 [CHAPTER SIX]
ADA POETRY GENERATOR
Use lists to write random poems

35 [CHAPTER SEVEN]
LIGHT AN LED
Connect an LED to the GPIO pins

40 [CHAPTER EIGHT]
LED TRAFFIC LIGHTS
Build a pedestrian crossing

45 [CHAPTER NINE]
MULTIPLE-CHOICE QUIZ
Create a fun quiz game

49 [CHAPTER TEN]
ADD A TITLE SCREEN
Make professional-looking games

54 [CHAPTER ELEVEN]
ADD A HIGH SCORE TABLE
Keep players coming back

59 [CHAPTER TWELVE]
BUILD A SPACE SHOOTER
Create an impressive 3D game

70 [CHAPTER THIRTEEN]
QUICK REFERENCE
A handy guide to blocks and more

06 [CHAPTER ONE]
GET STARTED
WITH SCRATCH
Find your way around

11 [CHAPTER TWO]
BOUNCY HEDGEHOG
Make your first game

16 [CHAPTER THREE]
LOST IN SPACE
Create an animation

21 [CHAPTER FOUR]
CHATBOT
An interactive character

25 [CHAPTER FIVE]
BOAT RACE
Code an arcade game

6

ESSENTIALS

[Chapter One]

[CHAPTER ONE]
GET STARTED
WITH SCRATCH

Fancy yourself as Disney or Miyamoto? Whether your
inspiration is Mickey Mouse or Mario, Scratch helps
you to bring your creations to life…

ESSENTIALS

6 [Chapter One]

7

 [LEARN TO CODE WITH SCRATCH]

7

et things moving with Scratch! In a matter of minutes, you can
build your first program to move the Scratch cat around the
screen using the up, down, left, and right cursor keys. When

you learn more later, you’ll be able to develop this simple program into
an art package with the cat as the pen, a game (where should the cat
go?), or anything else that needs keyboard-controlled movement. As
you work through this chapter, you’ll learn how the Scratch screen is
carved up, so you can easily find what you need as you build the other
projects in this book.

If you’re itching to write your own games or start building your own
electronics projects, Scratch is the perfect place to start.

Its simplicity comes from the way you select commands from a menu
and join them together like jigsaw pieces. Because Scratch comes with
a collection of images and sounds, you can start making your first
program in minutes.

Scratch’s power comes from the many creative ways in which you
can combine the commands to make your own program.

G

[Get Started with Scratch]

The Sprite List: Select your sprites
here, so you can change their scripts or
costumes. Click the Stage in the Sprite
List to add scripts to it or change its
background

The Blocks Palette:
This is where you
find the commands
to control your
sprites. Click the
rounded buttons
at the top to
switch between
the different types
of blocks

Scripts Area: Assemble
your programs here by
dragging blocks in from
the Blocks Palette and
joining them together

Tabs: Click the tabs
to choose between
changing a sprite’s
scripts, costumes,
or sounds

The Stage: Watch
your sprites move
and interact here

Get the latest
version of
Scratch by
updating your
operating system
using: sudo apt-
get update &&
sudo apt-get
upgrade

[KEEP UP
TO DATE]

8

ESSENTIALS

[Chapter One]8 [Chapter One]

Finding your way around
The screen is divided into a number of panes, highlighted in our
diagram on the previous pages.

Images that you can control in Scratch are called sprites. You can
make them move, draw on the screen, respond to clicks, change their
appearance, and interact with each other. A space game might have
an alien sprite, a space ship sprite, and a missile sprite, for example.
Many projects have more than one sprite, and you can choose between
them by clicking them in the Sprite List, in the bottom right. Every
new Scratch project includes the Scratch cat.

When you test your program, you’ll watch your sprites on the Stage,
in the top-right of the screen. Your games are more enjoyable when
they fill the screen, though, so when you’re ready to play properly,
click the easel icon on the right above the Stage to zoom in.

To make your sprites do something, you have to give them
instructions that tell them precisely what to do and when. Those
instructions come in the form of blocks that join together. The blocks
are sorted into eight categories:

Right: Scratch
comes with a

library of sprites
to choose from,
including these
fantasy sprites

If you’re using
online tutorials,
check they’re
compatible with
Scratch 1.4. The
newer Scratch
2.0 for PCs and
Macs is based on
Flash and won’t
work on the Pi.

[WHICH
VERSION?]

9

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

Motion: Used for moving sprites around the Stage.

Looks: Used for animating sprites, giving them speech bubbles,
and changing their size and appearance.

Sound: Used for playing recordings or musical notes.

Pen: Used to draw as a sprite moves around the Stage. Great
for making random art, and for special effects in games.

Control: Used to describe what happens when, and for making bits
of your program repeat.

Sensing: Used to test whether your sprite is touching another sprite
or another color, or to get information about other sprites.
You can also use the sensor value blocks in your own
electronics projects on the Raspberry Pi.

Operators: Used for maths, random numbers, and doing things to text.
There are also blocks here for combining the blocks used
in decision making.

Variables: Used to remember information, such as scores, timer
values, or player names.

You can find all the blocks in
the Blocks Palette on the left
of the screen. The blocks are
colour coded, so when you’re
copying programs from books or
magazines you can find the blocks
you need more easily.

In the middle of the screen
is the Scripts Area. This is
where you make your lists
of instructions (or ‘scripts’)
for your sprites.

[Get Started with Scratch]

Left: The hat
blocks in the
Control part of the
Blocks Palette can
be used to start
your scripts

The blocks with
a curved top, like
when space
key pressed,
are called hat
blocks. They can
only join at the
top of a script.

[HAT
BLOCKS]

10

ESSENTIALS

[Chapter One]10 [Chapter One]

Making your first Scratch script
We promised you could make your first Scratch
script in minutes, so here we go!

>STEP-01
Move 10 steps
When you open Scratch (it’s listed under
Programming in your Start menu), it shows the
Motion blocks in the Blocks Palette. Click the move
10 steps block here and you’ll see the cat move
on the Stage. Each time you click, it only moves
once. That’s because ‘10 steps’ is how far it moves,
and not how many times. You can click on the 10
and type a different number in here to make it go
further or less far with each click. Drag and drop
the move 10 steps block in the Scripts Area.

>STEP-02
Combining blocks
Drag the point in direction 90 block into the
Scripts Area. If you drop it just above the move 10
steps block, they’ll lock together. Look for the white

line that shows they’re about to join before releasing your mouse button. If
you click either of the blocks, Scratch will carry out the instructions in order,
first pointing in direction 90 (facing right) and then moving 10 steps. Click
the Control button above the Blocks Palette. Drag in the when space key
pressed block and join it to the top of your two blocks. Your sprite will move
to the right (direction 90) when you press the space bar.

>STEP-03
Making keyboard controls
Right-click your script and choose Duplicate. Click on an empty space
in the Scripts Area to drop your copied script. Repeat until you have four
identical scripts. Let’s turn them into cursor key controls. Click ‘space’
in the first block to open the menu and choose ‘up arrow’. In the point
in direction block below, click ‘90’ and choose ‘0’ (up). Now when you
press the up arrow, the cat moves up the screen. Edit the other scripts to
add controls for left, right, and down. Listing 1 shows the finished code.

Can you add
controls for
pen up and pen
down so you can
use this program
to draw on
the Stage?

[GET ARTY!]

.01

11

 [LEARN TO CODE WITH SCRATCH]

11[High Fliers][High fliers]

[CHAPTER TWO]

Spike the hedgehog loves playing on the trampoline,
but he’s a bit clumsy. Can you move the trampoline
to stop him landing with a bump?

ESSENTIALS

BOUNCY
HEDGEHOG

11[Bouncy Hedgehog]

12

ESSENTIALS

[Chapter One]12 [Chapter Two]

n this chapter, you’ll make your first Scratch game, in which
you use the cursor keys to move the trampoline left and right
to catch a bouncing target. This project shows you how to

bring in new sprites and backgrounds, and how to use the bracket
blocks and diamond blocks in your projects. You’ll find these skills
useful as you build the other projects in this book. Start a new Scratch
project, and get ready to bounce! Remember you can refer back to the
last chapter if you need help finding your way around the screen.

>STEP-01
Prepare your artwork
For this Scratch project, you don’t need the cat, so right-click it in the
Sprite List and then choose Delete. To add a new sprite, click the icon
above the Sprite List that shows a folder and a star. Add the trampoline
sprite from the Things folder, then the fantasy11 sprite in the Fantasy
folder. Let’s change the background: click the Stage in the Sprite List
and the Costumes tab changes to a Backgrounds tab. Click the tab and
use the Import button to bring in your choice of background. We’re
using the image atom-playground in the Outdoors folder.

I

Move the
trampoline left
and right to catch
the hedgehog and
bounce it back up
in the air

There are some
great fantasy
sprites included in
Scratch, including
this purple
hedgehog-like
creature!

13

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

>STEP-02
Adding player controls
Click the trampoline (which should
be Sprite1) in the Sprite List to
select it, and then click the Scripts
tab above the Blocks Palette.
Listing 1 shows the scripts you
need to add to this sprite. Work
your way down them, dragging
the blocks into the Scripts Area
one at a time and joining them up.
Click the white holes in the blocks
and type the right numbers in.
Remember that the colours are a
clue: to find the yellow blocks, click
the yellow Control button above
the Blocks Palette first.

>STEP-03
Set up the hedgehog
Click Sprite2 in the Sprite List
(the hedgehog). Add the script
shown in Listing 2 to it. This puts
the sprite in the top left when the
game begins, and gives the player
a chance to spot it before it moves.

>STEP-04
Add a repeat loop
We’re going to extend that script
now by adding some more blocks
at the bottom. Listing 3 (overleaf)
shows the entire script, including
the bits you’ve already done.
Click the Control button above
the Blocks Palette. Drag a repeat
until block into the Scripts Area
and join it to your script so far.

Below: Right-
click the sprite in
the Sprite List to
delete it. Note the
buttons to add a
sprite above the
cat here too

.01

.02

[Bouncy Hedgehog]

14

ESSENTIALS

[Chapter One]

(Make sure you don’t use the
repeat block with a number in it).
Next, you need to drop a < block
into the diamond-shaped hole.
Click the Operators button above
the Blocks Palette to find it. Type
-120 into the box on the right.
Finally, click the Motion button
and drag the y position block into
the left box. Now, whatever we put
inside the repeat until bracket
will be repeated until the sprite’s
y position (how far up or down the
screen it is), is less than -120. In
our game, that means it’s missed
the trampoline and hit the floor.

>STEP-05
Make the hedgehog move
To make the sprite move, add the two Motion blocks shown in Listing 4
into the repeat until block in your script. Click the green flag above
the Stage to test it so far. You should see the hedgehog go to the top
left, plummet down, and stop when it reaches the bottom.

14 [Chapter Two]

Above:
The Operators

blocks include the
block for picking

random numbers,
and the blocks
for comparing

numbers

.03 .04

15

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

>STEP-06
Make the trampoline bouncy
We need to make the hedgehog bounce back up again if it touches the
trampoline. Click the Control block and drag an if block into your
script. Be careful with where you put it: it belongs inside your repeat
until bracket, as shown in Listing 5. Click the Sensing button and drag
in a touching block for the diamond hole in your if block. Click the
menu in the touching block to choose Sprite1 (the trampoline). Inside
the bracket of your if block, put a point in direction 90 Motion
block. Instead of putting a number in its hole, this time we’ll use pick
random with values of -45 and 45. You’ll find it in the Operators section
of the Blocks Palette. Now the sprite will point in a random upward
direction (between 45 degrees left and 45 degrees right) if it touches
the trampoline. Finally, add a say block at the end of your script,
outside all the brackets. This is shown when game ends.

.05

[Bouncy Hedgehog]

16

ESSENTIALS

[Chapter One]

[CHAPTER THREE]

Program your own animation of a spaceship heading
for Earth, using a scaling effect to make the ship
smaller as it moves into the distance

ESSENTIALS

16 [Chapter Three]

LOST IN SPACE

Join your local Code Club

for more amazing resources

like this: codeclub.org.uk

https://www.codeclub.org.uk/

17

 [LEARN TO CODE WITH SCRATCH]

17

n this chapter, you’ll be creating an animation sequence,
which, perhaps unexpectedly, involves a rotating space
monkey! This project will show you how to move, rotate, and

scale sprites. This is something which will also come in very handy for
other projects and games. So, start a new Scratch project and get ready
to do some animating. If you need any help navigating the Scratch
menus, refer to chapter 1.

>STEP-01
Prepare your artwork
After deleting the cat (right-click and Delete), it’s time to import a
new stage background and sprites. Let’s begin by creating our space
scene, changing the stage to a field of stars: click Stage in the Sprite
List (bottom right), select the Backgrounds tab (top middle), then
click Import and navigate to ‘stars’ in the Nature folder. Since none
of the sprites used in this project is in the Scratch 1.4 library, you can
download them (magpi.cc/scratch_art). First, let’s import the Earth
and Spaceship sprites: for each, click the star/folder above the Sprite
List, then navigate to the folder where you’ve stored your sprites.

I

[Lost in Space]

At the start of the
animation, the
spaceship takes off
vertically before
being told to point
towards the Earth

The star is given
a twinkling
effect by scaling
its size up and
down repeatedly

This space rock
floats around and
bounces off the
edges of the screen

http://magpi.cc/scratch_art

18

ESSENTIALS

[Chapter One]

>STEP-02
Move the spaceship
Click the Spaceship sprite
in the Sprite List to select it, then
click the Scripts tab. Listing 1
shows the script you need to
add to this sprite to make it
move. First, we point it upwards
(point in direction 0)
and tell it to go to x: -150
y: -150, near the bottom-
left corner. After waiting one
second, we use the handy
point towards Motion block to
point it at our Earth sprite. We
then use a repeat loop to keep
moving it towards Earth, two
steps at a time.

18 [Chapter Three]

Right:
The spaceship
points towards

Earth and
is gradually
moved and

shrunk within a
repeat loop

.01

19

 [LEARN TO CODE WITH SCRATCH]

[Lost in Space]

>STEP-03
Scale the ship
To simulate the spaceship moving
further away from us, we need
to gradually reduce its size as it
moves towards Earth. This is easily
achieved by adding a single extra
block to its existing script. Click
the Looks button in the top-left
pane and then drag a change
size by block and drop it just
below your move 2 steps block,
within the repeat loop. Change
the 10 of the change size block
to -0.5. The code should look like
Listing 2. Now, try clicking the
green flag to see your space rocket
hurtle towards Earth, getting
smaller all the time.

>STEP-04
Add a space monkey
Now let’s add a few extra features
to our space scene. For a bit of fun,
we’ll add a floating monkey who’s
lost in space. Click on the star/
folder icon again and navigate to
your Lost in Space sprites folder,
then select Monkey. As with any
sprite, you can adjust its size using
the Grow/Shrink sprite icons
above the stage. Now let’s give our
monkey a space helmet! Select it
in the Sprite List, then click the
Costumes tab and the Edit button.
In the Paint Editor, select the
Ellipse tool, the outline option (on
the right) below the tools, then

 [LEARN TO CODE WITH SCRATCH]

.02

.03

Below:
In the Paint
Editor, draw an
ellipse around
the monkey’s
head to give him
a space helmet

20

ESSENTIALS

[Chapter One]

a yellow colour from the palette. Now draw a yellow ellipse around the
monkey’s head for a helmet. To make things more interesting, we’ll make
our monkey spin around by adding the simple looping script in Listing 3.

>STEP-05
Bounce and shine
Finally, we’ll add a shining star and bouncing rock. Import them both
from your Lost In Space sprites folder, then position and scale them on
the stage to your liking. For the star, add the code from Listing 4 (two
repeat loops inside a forever one) to repeatedly scale it up and down
in size. Add the Listing 5 code to the rock to get it moving, including a
special block (as used in chapter 2) to make it bounce off whenever it
reaches the edge of the stage.

>STEP-06
Taking it further
Your animation should look pretty cool by now. Try playing around
with various parameters to see how they affect the speed, movement,
and scaling of the objects. You could also add your own touches, such
as using a change color effect block to give the spaceship a fancy
disco-light effect as it moves!

20 [Chapter Three]

.04 .05

21

 [LEARN TO CODE WITH SCRATCH]

21[High Fliers][High fliers]

[CHAPTER FOUR]

Nano the cute robot loves to chat. He’ll
respond to your answers, and he’ll even
jump up and down if you ask him to...

ESSENTIALS

CHATBOT

21[ChatBot]

Join your local Code Club

for more amazing resources

like this: codeclub.org.uk

https://www.codeclub.org.uk/

22

ESSENTIALS

[Chapter One]22 [Chapter Four]

or this project, you’ll be creating your own talking robot which
responds to your text input. We’ll also alter his expression
by switching between different costumes. We’ll be using ask

commands, if/else blocks, and the join Operator. We’ll also create
a variable to store the user’s name – variables are really handy for
storing values to use elsewhere. That’s enough chitchat – let’s start up
a new Scratch project…

>STEP-01
Prepare your artwork
After deleting that cat by right-clicking on it and selecting Delete, it’s
time to import a new stage background and our character sprite. Since
neither of these is in the Scratch 1.4 library, you can download them
(magpi.cc/scratch_art). Let’s choose a new backdrop: click Stage in the
Sprite List (bottom right), select the Backgrounds tab (top middle), then
click Import and navigate to the place in the folder where you’ve stored the
downloaded graphics for this project. Next, click the star/folder icon above
the Sprite List, then navigate to the same folder and import the Nano
sprite. If you click the Costumes tab, you’ll notice that Nano has four of
them; we’ll switch between them to animate our little robot friend.

F

The ask command
also brings up a
text input field for
the user to enter
their answer

The Nano
sprite has four
costumes, which
are alternated to
animate him

As when using say,
the ask command
results in a
speech bubble

http://magpi.cc/scratch_art

23

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

>STEP-02
Ask for a name
First, we’ll get our robot to ask
for the user’s name and then use
it in a response. With the Nano
sprite selected, click the Scripts
tab (top middle) and add the code
from Listing 1 (overleaf). Note
that instead of using when green
flag clicked, we’re starting the
program when the Nano sprite is
clicked. He then asks for the user’s
name, which is stored in a variable
called name. First, we need to create
the latter: select Variables from
the top left, then click ‘Make a variable’, ‘For this sprite only’, and enter
‘name’ in the text field. Untick the name block to stop it showing on the
stage. We can now set name to answer (the user’s text input) and then add
it into Nano’s response by using the join Operator block. Make sure you
put a space after ‘Hi’ to avoid it being joined together with the name.

>STEP-03
Add a question
Next, we’ll add some more blocks
from Listing 2 to the bottom of this
script. After saying ‘hi’ to them,
Nano asks the user it they’re OK.
Again, we use the ask Sensing block
for this, and the name variable to
refer to them by name. We then
use an if…else Control block to
determine Nano’s response based on
the user’s input. If it’s ‘yes’ – which
we test for using the = Operator – we
switch Nano’s costume to happy
nano-c, using the drop-down box on
this Looks block. We also get him to
say ‘That’s great to hear!’

[ChatBot]

Above: We create
a variable to
store the user’s
name and then
repeat it within
Nano’s speech

Above: By switching between four
costumes, we can alter our character’s
facial expression

24

ESSENTIALS

[Chapter One]24 [Chapter Four]

Above:
The Operators

blocks include the
block for picking

random numbers,
and the blocks
for comparing

numbers

>STEP-04
Else this…
In the else part of the if…else
block, we determine what happens
if the user’s input isn’t ‘yes’. In this
case, we’ll switch Nano’s costume
to the frowning nano-d and get him
to say ‘Oh no!’ Test out this code
with different input to check that
it’s working as expected. Note that
while the user’s text input isn’t
case sensitive, it has to be just ‘yes’,
with nothing added, in order to be
recognised as such.

>STEP-05
Jump up and down
Finally, we’ll add another question
with ask, using a standard if block
to make Nano jump up and down
or not; add the blocks from Listing 3
to the script. We use a repeat loop
to make Nano move repeatedly up
and down for a jumping animation.
To make sure he’s not frowning
from the previous response while
doing so, we switch it to nano-c
before the repeat loop.

>STEP-06
Taking it further
You can alter the example questions
or add any extra ones you want, even
getting Nano to tell a joke. You could
also add extra costumes by copying
and editing them in the Paint Editor,
or even a design a brand new sprite
with various costumes.

.01

.02

.03

25

 [LEARN TO CODE WITH SCRATCH]

25[High Fliers][High fliers]

[CHAPTER FIVE]

Create your own boat race game,
complete with mouse control, collision
detection, and on-screen timer

ESSENTIALS

BOAT RACE

25[Boat Race]

Join your local Code Club

for more amazing resources

like this: codeclub.org.uk

https://www.codeclub.org.uk/

26

ESSENTIALS

[Chapter One]26 [Chapter Five]

n this chapter, you’ll be making your own arcade game in
which the player attempts to guide a boat safely around a
maze-like course – including a revolving gate – to the finish in

as fast a time as possible. You can even design your own custom course
if you like. As well as moving a sprite towards the mouse pointer,
this project involves collision detection, using the touching color
Sensing block to determine whether the boat has hit something. Let’s
dive in and start coding…

>STEP-01
Prepare your artwork
First, delete the cat! You should then import the two sprites, for the boat
and gate. Since they’re not in the Scratch 1.4 library, you can download
them (magpi.cc/scratch_art). Just click the star/folder icon above the
Sprite List (bottom right), then navigate to the folder where you’ve stored
the downloaded graphics for this project. Import the Boat and Gate sprites.
If you aren’t designing your own course, you can also download and import
our Course backdrop: click Stage in the Sprite List, select the Backgrounds
tab (top middle), then click Import and navigate to the folder.

I

The timer is shown
on screen, and
stops when the
boat reaches the
yellow beach

The boat sprite is
programmed to
move towards the
mouse pointer

The boat crashes
if it hits something
brown like this
revolving gate

http://magpi.cc/scratch_art

27

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

>STEP-02
Design a course
You could just edit our course.
Alternatively, to create a brand
new one, click on the Stage in the
Sprite List, then the Backgrounds
tab, and Paint. Use the paint
bucket tool to fill the canvas with
a blue colour for the water. Then
use a brown colour – which should
be the same as in the Gate sprite
– to draw the walls of the course.
Use a yellow colour to draw some
sand for the finish. Finally, add
some white arrows which will act
as speed boosters. Once this is
done, let’s make our Gate sprite
rotate by adding the simple code
in Listing 1 to its Scripts area.

[Boat Race]

.01

.02

Left: We used
touching color
Sensing blocks
to detect when
the boat has hit a
hazard, booster,
or the finish

28

ESSENTIALS

[Chapter One]28 [Chapter Five]

>STEP-03
Controlling the boat
In this game we’ll be controlling the boat with a mouse – using the
code in Listing 2 in the Scripts tab of the Boat sprite. To do this, we
simply point it towards ‘mouse pointer’ and move it 1 step at a time,
within a forever loop. To stop it from moving when near the pointer,
we put the control code in an if block that only tells it to move if the
distance to the pointer is greater than 5. Try out the code and guide the
boat: at the moment, it sails straight through barriers.

>STEP-04
Make it crash!
What we need is some collision detection to check whether the boat has
hit a hazard. Within your forever block, add the code from Listing 3
under your boat control code. Here, we use the touching colour
Sensing block to see if the boat has hit anything brown: click the colour
square to get a dropper tool, then click on a brown part of the course.
When it crashes, we switch the boat’s costume, say ‘Noooooo!’, then
place it back at the start point (in its normal costume).

Let’s add two more if touching color blocks, shown in Listing 4, to
our forever loop. The first checks whether the boat has reached the yellow
beach, which acts as the finish line, and stops the program. The second
detects the white of our booster arrows and moves the boat three steps.

.03

29

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Boat Race]

>STEP-05
Boosters and time
To make our game a bit more
exciting, we need a timer. Click
the Stage and add the Listing 5
code to its Scripts area. This sets
the time to zero at the start of the
game, then gradually increases the
time variable in line with real time
– you’ll need to create the latter in
Variables and make sure it’s ticked
so that it’s shown on the stage.

>STEP-06
Taking it further
You could easily add a sound effect
for when the boat crashes, using
a Sound block. You could even add
background music, composing it
using Sound blocks with various
drums, instruments, and notes.
The best time(s) could also be
stored in a variable or list.

.04

.05

Left: You
can edit the
course in the
Paint Editor or
create a brand
new one

30

ESSENTIALS

[Chapter One]

[CHAPTER SIX]

Ada Lovelace unveils the Analytical Engine!
This early computer looks a bit primitive,
but can generate random poems

ESSENTIALS

30 [Chapter Six]

ADA POETRY
GENERATOR

Join your local Code Club

for more amazing resources

like this: codeclub.org.uk

https://www.codeclub.org.uk/

31

 [LEARN TO CODE WITH SCRATCH]

31

n this project, the user first chats to Ada, before clicking on
her computer to generate a random poem. To achieve this,
we’ll be creating and using lists – found in the Variables block

category – containing words of a certain type: verbs, nouns, adjectives,
and adverbs. We’ll then select randomly from these lists to create the
poem, which should be different each time. They can be quite amusing.

>STEP-01
Prepare your artwork
After deleting the cat sprite, as usual, you need to import the sprites
and backdrop. Since they’re not in the Scratch 1.4 library, you can
download them (magpi.cc/scratch_art). As the Poetry backdrop is so
simple – just a grey stripe at the bottom of a white canvas – you could
paint it yourself, or just use ours by importing it from the folder where
you’ve stored the downloaded graphics for this project. The same
goes for the Banner sprite. Otherwise, import each sprite as usual,
by clicking the star/folder icon above the Sprite List.

I

[Ada Poetry Generator]

The poem is
generated by
selecting random
words from lists

When the computer is
clicked, it beeps and shakes

The user clicks on Ada Lovelace
to start talking to her

http://magpi.cc/scratch_art

32

ESSENTIALS

[Chapter One]32 [Chapter Six]

>STEP-02
Ada says hello
Similar to our ChatBot in chapter 4, we’ll get our Ada sprite –
when clicked – to interact with the user via speech bubbles and
text input, using the say and ask commands. Open the Ada sprite’s
Scripts tab and type in the code from Listing 1 (overleaf). As before,
you’ll need to create a name variable: select the Variables block category
from the top left, then click ‘Make a variable’, ‘For this sprite only’,
and enter ‘name’ in the text field. You should untick the name block
to stop it showing on the stage. We can now set name to answer (the
user’s text input) and then add it into Ada’s response by using the join
Operator block. Make sure you put a space after ‘Hi’ to avoid it being
joined together with the name. After this, we add a block to get Ada to
tell the user to click the computer.

>STEP-03
Computer beeps
Click the Computer sprite and select its Scripts tab. This is where
we’ll add the workings of our poetry generator. To start with, type
in the code from Listing 2 (on page 32). After a block to say ‘Here is
your poem’ and the user’s name, we’ll use a Sound block to make our
computer beep. Our Computer sprite already has the sound for this,
or you can record/import a new one in its Sounds tab. We also add a
repeat loop with two turn blocks to make the computer shake.

Right: The script
for Ada is similar

to that used for
Nano in chapter 4,
which asks for the

user’s name

33

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Ada Poetry Generator]

>STEP-04
Create word lists
You can’t make a poem without words. We’ll store ours in four lists:
verbs, adverbs, nouns, and adjectives. Create each of these in
Variables, by clicking the ‘Make a list’ button, then ‘For this sprite
only’, and typing its name. It will then appear on the stage: to add
words to it, click the ‘+’ icon and type them in, one by one. When done,
untick this list block to make it vanish from the stage. We used the
following words for our lists:

Adjectives: happy, tired, hungry
Adverbs: loudly, silently, endlessly
Nouns: sea, moon, tree
Verbs: laugh, dance, burp

>STEP-05
Poetry in motion
Now we have our word lists, we can use them to generate a random
poem each time the computer is clicked by the user. Join the code from

Left: To add words
to each list, tick it
to make it appear
on the stage, then
click its ‘+’ icon

34

ESSENTIALS

[Chapter One]

Listing 3 to the bottom of your
existing script for the Computer
sprite. It comprises four say
blocks, each of which includes
an item of Variables block; this
should have ‘any’ selected from
its drop-down menu, to make a
random selection from the list.
Test the project out a few times to
check that it works properly and
generates random poems.

>STEP-06
Taking it further
While we’ve only created short
lists for this example, you could
add lots more words to them
for greater variation in the
random poems created by the
computer. More, and differently
constructed, say blocks can also
be added to make poems longer.
If you’re not keen on blank
verse, why not create lists of
rhyming words?

34 [Chapter Six]

.01

.03

.02

35

 [LEARN TO CODE WITH SCRATCH]

35[High Fliers][High fliers]

[CHAPTER SEVEN]

ESSENTIALS

LIGHT
AN

35[Light an LED]

Scratch can be used with the Pi’s GPIO pins
for physical computing projects. Here,
we’ll hook up a button-activated LED

LED

36

ESSENTIALS

[Chapter One]36 [Chapter Seven]

n the latest version of Raspbian Jessie, Scratch features a
built-in GPIO server to make it easier to control electronic
components or add-on boards. In this first GPIO tutorial, we’ll

be creating a simple circuit with a button that, when pressed, causes
an LED to light up. Take a look at the ‘You’ll Need’ box to see which
electronic components are required; you can buy them separately, but
they’re all in the CamJam EduKit #1 (magpi.cc/1OcXtim).

>STEP-01
Connect the LED
It’s best to turn the Pi off when building your circuit. The breadboard
features numbered columns, each comprising five connected holes.
Place your LED’s legs in adjacent numbered columns, as shown in the
diagram. Note that the shorter leg of the LED is the negative end; in its
breadboard column, insert one end of the resistor, then place the other
end in the outer row marked ‘–’ (the ground rail). Use a male-to-female
jumper wire to connect another hole in that ground rail to a GND pin on
the Pi. Finally, use a jumper wire to connect a hole in the column of the
LED’s longer (positive) leg to GPIO pin 17.

I

The LED’s longer
leg is wired to GPIO
17, while the other
is connected via
a resistor to the
ground rail

By wiring the ‘–’
row, or ground
rail, to a GND
pin, multiple
components
can share the
connection

When the button
is pressed, the
circuit is broken
and Scratch senses
a zero value from
GPIO pin 21

> Solderless
breadboard

> LED

> 333Ω resistor

> Push button

> 3× male-to-
female jumper
wires

> Male-to-male
jumper wire

You’ll
 Need

http://magpi.cc/1OcXtim

37

 [LEARN TO CODE WITH SCRATCH]

>STEP-02
Configure Scratch GPIO
Before we can use the GPIO pins from Scratch, we need to turn its GPIO
server on. While this can be done from the Edit menu, instead we’ll get
our code to activate it. Under a when green flag clicked block, add
a broadcast Control block, click its arrow, select new/edit, and enter
gpioserveron. We also need to configure GPIO pin 17 as an output
pin (to trigger the LED), so add another broadcast block and change
it to config17out.

>STEP-03
Light the LED
We’ll now test our circuit by using
a loop to make the LED blink. Add
a forever block to the bottom
of your code. Within it, add the
following blocks: broadcast
gpio17on, wait 1 secs,
broadcast gpio17off, and wait
1 secs. Now try running the code
(Listing 1) and your LED should
blink on and off continually.

 [LEARN TO CODE WITH SCRATCH]

.01

Above: This
project is simple
to wire up using
a solderless
breadboard
and some
jumper wires

[Light an LED]

38

ESSENTIALS

[Chapter One]

>STEP-04
Connect the button
We can control our LED by adding a push button. Again, we’d advise
you to turn the Pi off while connecting new components. Add the push
button to the breadboard, with its pins straddling the central groove (as
shown in the diagram). Connect a male-to-female jumper wire from one
pin’s column to GPIO pin 21 on the Pi. Connect a male-to-male jumper
from the other pin (on the same side of the groove) to the ground rail
you’re using for the LED circuit (to share its connection to the GND pin).

>STEP-05
Configure button
Before Scratch can react to your new button, it needs to be told which
pin is its input. Delete the forever loop from your blinking LED code,
by dragging it out of the area. Add another broadcast block with
config21in to configure GPIO pin 21 as an input – see Listing 2. Run and

stop the code. Now, click the
Sensing category in the top-left
pane. Find the sensor value
block and change it to gpio21.
Click its tickbox to show its
value on the stage: whenever
the button is pressed, it should
change from 1 to 0.

38 [Chapter Seven]

.02

.03

39

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Light an LED]

Left: Ticking the
button’s gpio21
sensor value will
show it on the
stage, which is
handy for testing

>STEP-06
Link to LED
With the button working, it’s time to make it trigger the LED. Add the
code from Listing 3 to the end of yours. Again, we’re using a forever
block for a continual loop. Inside it we add an if…else block. In the if
field, we place an = Operator
block; in its left field, we add
gpio21 sensor value, with 1 in
the right field. Underneath, we
insert broadcast gpio17off.
This way, when the button
isn’t pressed, the LED will
be off. Under else, we insert
broadcast gpio17on, to light
the LED when the button is
pressed. Run the code (as in
Listing 4), press that button,
and watch your LED! In the
next chapter, we’ll add more
LEDs to the circuit to make
a pedestrian crossing.

.04

40

ESSENTIALS

[Chapter One]

[CHAPTER EIGHT]

Following on from the previous chapter,
we’ll use three LEDs and a push button to
make a pedestrian crossing

ESSENTIALS

40 [Chapter Eight]

TRAFFIC
LIGHTSLED

41

 [LEARN TO CODE WITH SCRATCH]

41

n the latest version of Raspbian Jessie, Scratch features a
built-in GPIO server to make it easier to control electronic
components or add-on boards. In this second GPIO tutorial,

we’ll create some traffic lights with a pedestrian crossing using LEDs,
a push button, and a buzzer. Again, all the components required are in
the CamJam EduKit #1 (magpi.cc/1OcXtim).

>STEP-01
Connect the LEDs
It’s best to turn the Pi off when building your circuit. The breadboard
features numbered columns, each comprising five connected holes.
Add the LEDs to it, as shown in the diagram. If you’ve just finished
chapter 7, you can leave those components, including the red LED,
in place. As before, the shorter (negative) leg of each LED should be
connected via a resistor to the ‘–’ row (common ground rail), which
is wired to a GND pin on the Pi. Each LED’s longer (positive) leg
should be connected to the respective GPIO pin via a male-to-female
jumper cable.

I

[LED Traffic Lights]

 Each LED is
connected to a
different GPIO
pin, so it can be
triggered during
the traffic light
sequence

A piezo buzzer is
wired up to the
ground rail and
GPIO pin 16, for
our pedestrian
crossing beeps

When the button
is pressed, the
circuit is broken
and Scratch senses
a zero value from
GPIO pin 21

> Solderless
breadboard

> 3× LEDs: red,
yellow, and
green

> 3× 333Ω
resistors

> Push button

> Piezo buzzer

> 5× male-to-
female jumper
wires

> 2× male-to-
male jumper
wires

You’ll
 Need

http://magpi.cc/1OcXtim

42

ESSENTIALS

[Chapter One]

>STEP-02
Configure Scratch GPIO
First, we need to turn on Scratch’s
GPIO server. Under a when
green flag clicked block, add
a broadcast Control block, click
its arrow, select new/edit, and
enter gpioserveron. We also
need to configure our LEDs’ GPIO
pins as outputs, so add three
more broadcast blocks and
change them to config17out,
config23out, and config25out
respectively. While we’re at it,
we’ll configure the pins for the
buzzer (config16out) and button
(config21in) we’ll use later – your
code should look like Listing 1.

>STEP-03
Traffic light sequence
We’ll now test our circuit by creating a traffic light sequence: red,
red/amber, green, amber. Add the code from Listing 2. Here, within
a forever block, are blocks to turn the LEDs on and off in the correct
sequence, waiting a few seconds between each change. Try running it
to check that all the LEDs are connected correctly and working.

>STEP-04
Connect the button
For our pedestrian crossing, we’ll
need a push button. Again, you
can use the one already placed
in chapter 7, which straddles the
central groove of the breadboard
and is connected to the ground
rail and GPIO pin 21. We’ve
already configured it as an output
in step 2; run and stop that code.

42 [Chapter Eight]

Above:
While there’s quite

a jumble of wires,
it’s relatively easy

to connect all
the components

.01

43

 [LEARN TO CODE WITH SCRATCH]

Now, click Sensing in the top-
left pane. Find the sensor value
block and change it to gpio21.
Click its tickbox to show its value
on the stage: when the button is
pressed, it’ll change from 1 to 0.

>STEP-05
Stop the lights
We need to get a button press to
cause the traffic lights to stay
on red for a few seconds. Select
Variables from the top-left, then
click ‘Make a variable’ and enter
‘pushed’ in the text field. Add
the code from Listing 3, keeping
it separate from the rest. Using
an if block, this sets pushed to
True when the value sensed from
GPIO pin 21 is zero, i.e. when
the button is pressed. Next, we
need to add an if…else block to
our traffic light sequence code,
to stop it when pushed is True.
After moving the light sequence

[LED Traffic Lights]

 [LEARN TO CODE WITH SCRATCH]

.02

Left:
Four
pieces of
code are
used for GPIO
configuration,
light sequence,
button press
detection, and
buzzer beeping

.03

44

ESSENTIALS

[Chapter One]44 [Chapter Eight]

blocks out of the forever block
(keeping them in the Scripts
area), add in an if…else block
and put the light sequence
blocks back under if. In the if
field, use an = Operator block
with pushed in the left field and
‘False’ in the right. Under else,
add a broadcast and wait block
set to ‘beep’ – we’ll be using this
for our buzzer in the next step.
Your light sequence code should
now resemble Listing 4.

>STEP-06
Add a buzzer
Finally, we’ll add a piezo buzzer,
connected to the ground rail
(short leg) and GPIO pin 16 (long
leg), to make a beeping noise
when it’s safe to cross the road.
Add the code from Listing 5
as a separate script. This runs
whenever beep is broadcast,
after the button is pressed and
the light sequence ends. It shows
a red light and uses a repeat
loop to turn the buzzer on and off
for a beeping sound. Finally, it
turns off the red LED and resets
the pushed variable to False.
Test out your pedestrian crossing
by pressing the button!

.04

.05

45

 [LEARN TO CODE WITH SCRATCH]

45[High Fliers][High fliers]

[CHAPTER NINE]

ESSENTIALS

MULTIPLE-CHOICE
QUIZ

45[Multiple-Choice Quiz]

Dazzle your friends with your own
quiz game, containing hundreds
of questions! How many can they
get right in 30 seconds?

46

ESSENTIALS

[Chapter One]46 [Chapter Nine]

ists are used to remember lots of information, but adding
items to them block by block can take a lot of time and Scratch
code. In this project, you’ll see how you can import (or bring

in) large lists from other places, so you can easily make a quiz game
with hundreds of questions. As you create this game, you can use
your own favourite background and sprites, and arrange them with
enough space for the answers to appear. Perhaps you can add your own
question list? Anything works, as long as each answer only applies to
one question.

>STEP-01
Gather your data
For this game, you’ll need two text files: one for the questions and one
for the answers. We’re going to make a quiz about capital cities, so one
file will contain a list of capitals, and the other will contain the countries
they are in, in the same order. Start by finding the list of capital cities by
population on Wikipedia. Click and drag over the table to highlight it and
then press CTRL+C to copy it. It’s easier if you highlight from the bottom
up. Be patient when the screen scrolls!

L

> LibreOffice –
if not installed,
open a
terminal and
type sudo
apt-get
install
libreoffice

> List of capitals
by size –
wki.pe/List_
of_national_
capitals_by_
population

> Internet access

You’ll
 Need

The game runs
for 30 seconds
before it ends

Click to answer;
the answer data
comes from a list
on Wikipedia

47

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Multiple-Choice Quiz]

>STEP-02
Create your question files
Start LibreOffice Calc and paste in
the table using CTRL+V. Click OK.
This might take a minute or two to
work. Click above your cities column
to highlight it. Press CTRL+C to
copy the column. Open your text
editor, Leafpad, which is in the
Accessories menu. Press CTRL+V to
paste. You should now have a text
file containing just capital cities,
each one on a new line. If you have
a heading at the top (the word
‘Capital’), delete it, and remove
any blank lines at the end too. Save
this file as cities.txt. Open a
new file in Leafpad and repeat the
process with the countries column
in LibreOffice Calc. This time, save
your Leafpad file as countries.txt.

>STEP-03
Importing your data into Scratch
Start Scratch. Click the Variables
button and make a list. Call it cities
and make sure it’s for all sprites.
When the empty list appears on the
Stage, right-click it and click import
in the menu. Browse to the files you
just created, and double-click your
cities text file. The list on the Stage
will be filled with the cities from your
file. Repeat the process to make a list
called countries and fill it with your
countries file. Your list files should be
the same length. Right-click the list
boxes on the Stage and choose hide.

.01

.03

.02

48

ESSENTIALS

[Chapter One]48

>STEP-04
Set up your variables
Through the Variables part of the Blocks Palette, make variables called
question number (used to remember which question/answer pair we’re
asking), score, shuffle choice and temporary storage (used for
shuffling the list of options), and wrong answer (used when making the
list of wrong options). You also need to make a variable called player
guessed to remember which answer the player chooses, and a list called
possible answers. Make all these variables and the list ‘For all sprites’.

>STEP-05
Make the main game code
The main game code uses three scripts (Listings 1-3). Add them all to the
cat sprite. The game uses broadcasts to pass control to the various parts
of the program, including on the same sprite. The ‘ask a question’ section
picks a random question number from the list of countries and makes a
list of possible answers. It includes the correct answer, and two wrong
answers which must be different from the correct answer. The code then
shuffles this list to put the answers in a random order, before using a
broadcast to make the answer sprites appear and show their answers.

>STEP-06
Make the answer sprites
Import a new sprite to use for
showing the answer; we’re using
Gobo. This sprite has five short
scripts (Listing 4). Make the
variable answer choice, but click
the button to make it ‘For this
sprite only’. If the game shows all
the same answers when you run it,
you probably made a mistake here!
When you’ve finished this sprite,
right-click it and duplicate it twice.
In the copies, change the value of
the answer choice variable at the
top to 2 for the first one and 3 for
the second one. Happy quizzing!

.04

[Chapter Nine]

49

 [LEARN TO CODE WITH SCRATCH]

49[High Fliers][High fliers]

[CHAPTER TEN]

ESSENTIALS

ADD A TITLE
SCREEN

49[Add a Title Screen]

To make a professional-looking game,
follow these steps to add a title screen
with instructions and a fun animation

50

ESSENTIALS

[Chapter One]50

book has a cover, a film has its credits, and an album has its
artwork. Only with the right presentation do these things
feel professional and complete. In the same way, a great

game starts with a title screen that draws players in and provides
instructions. It’s especially important if you want to share your game,
as you won’t be there to explain it when it’s played. In this article,
you’ll see how you can add a title screen to a basic game. The same
techniques will work for most simple games, so why not try adding
a title screen to your own games, too?

>STEP-01
Write your game
We recommend you try adding a title screen to our example game Cat
Catcher before you add one to your own game. To make Cat Catcher,
first bring in the sprite Gravity Marble from the Things folder. It comes
with some scripts for controlling it with the cursor keys. Add Listing 1
to your cat sprite. Together, these two sprites make a game where
you’re challenged to see how quickly you can catch the cat ten times
with the marble. We’ve added the playing field background.

A

Add an animated
sprite to your
title screen and
use ‘say’ blocks
to tell players
how it works

Black text on hot
pink: a timeless
background
design!

[Chapter Ten]

51

 [LEARN TO CODE WITH SCRATCH]

>STEP-02
Create your title screen
background
Create a new background image
that you’ll be using for your
game’s title screen. Ours is just
a bright colour with the game
title on it, but you could make
something more elaborate if you
like. On the background, add
the scripts shown in Listing 2.
They change the background
between the title screen and the
in-game background, and tell
all the sprites to go into ‘title
screen’ mode when the green
flag is clicked. Ultimately, this
should be the only time you use a
when green flag clicked script.

 [LEARN TO CODE WITH SCRATCH]

[Add a Title Screen]

.01

.02

52

ESSENTIALS

[Chapter One]52

>STEP-03
Create your title screen sprite
This is the sprite that will tell the
player how to play, and it can be
animated too. For our game, we’ve
brought in another cat sprite. Add
Listing 3 to it. There are three
parts to this: one part displays the
title animation and instructions;
another part starts the game when
the sprite is clicked; and a third
part hides the sprite when the
game begins. You’ll need to make
a variable called game status,
which all sprites will use to tell
whether the game is running or
the title screen is on. You can add
more sprites to your title screen.
Include the when I receive
play game script from Listing 3 to
hide them when the game begins.
Use a when I receive title
screen script to show them on the
title screen.

>STEP-04
Replace your green flag scripts
Now you need to go through
your game sprites (the game cat
and the marble in our example)
and change their scripts so they
don’t start when the green flag

is clicked anymore. For each sprite and each of its scripts, replace
the block when green flag clicked with the block when I receive
play game. Add Listing 4 to your game sprites to make them hide
when the title screen is on, and appear when the game begins. If
a sprite shouldn’t be there at the start of the game, you can leave
out the show script.

.03

[Chapter Ten]

53

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Add a Title Screen]

>STEP-05
Replace the forever loops
Some of your in-game sprites might have forever loops. These will
keep running even when the title screen is showing and the sprite is
hidden. To avoid this causing unwanted results, replace the forever
block on your in-game sprites with the forever if block. Give the
block the condition game status = game, using your variable game
status and the = Operator block. You might also have events that are
triggered, such as when there’s a key press. To stop these working on
the title screen, wrap an if block around the entire script after the
when [space] key pressed block and give it the condition game
status = game, too.

>STEP-06
Start a new game
When your game finishes, you can show the title screen again by
adding a Control block to broadcast title screen. For example, you
could add it to the end of Listing 1 in our game. Players can once again
start a new game from the title screen. That will keep them in the
game and encourage them to keep playing until they’ve got a score
they can brag about! You might need to make some other tweaks for
your game - each one is different, after all - but following these steps
should enable you to add a title screen to most simple games, to make
them look more polished.

.04

54

ESSENTIALS

[Chapter One]

[CHAPTER ELEVEN]

Keep players coming back for more by keeping
a record of the best scores, and telling them
how they measure up

ESSENTIALS

54 [Chapter Eleven]

ADD A HIGH
SCORE TABLE

55

 [LEARN TO CODE WITH SCRATCH]

55

his project features scripts that enable you to create a high
score table, and then add new scores to it if they’re high
enough. There isn’t an easy way to display and hide a list from

within your program, so the scripts also tell players how they ranked
and what the next highest score is, so they know how close they came
to beating it. This code will work with most simple games, but you
might need to make some changes if your game invites players to play
again, or has scripts that continue when the game has ended.

>STEP-01
Make your game
You’ll need a game to add this script to – either one of your own, or
one that you’ve programmed from a book or magazine. Try playing
the game a few times to work out the likely scores. Some games award
a few points, some hundreds, and some thousands. The starting
numbers in your high score table should present a challenge to players,
but not be completely unachievable. Take care with your own games: if
you’ve spent days playing them in development, they’ll be much easier
for you than anyone else.

T

[Add a High Score Table]

Tick the box in the
Blocks Palette to
see the list and
edit its values. No
cheating, now!

The sprite checks
the player’s score
and tells them
how they did

56

ESSENTIALS

[Chapter One]

>STEP-02
Add your high score sprite
The scripts for the high score can all go on the same sprite.
This sprite will tell players if they got a high score. It could be the
main character of your game, the sprite used on the title screen

(see the previous chapter), or it could be a new sprite. We’ve added
the sprite royalperson for our high score table. You’ll find it in
the ‘people’ folder, even though it looks like a dog. It’ll be in the
way during the game, so add Listing 1 to hide it when the green
flag is clicked.

>STEP-03
Set up your list
Your high score table will be stored in a list. Click the Variables button
above the Blocks Palette, click the button to make a list, and call it
‘high scores’. In the Blocks Palette, you can click the tickbox beside
the list name to show or hide the list on the Stage. This is a handy
way to view the whole list, and you can edit the values in it by clicking
them and typing on them. The list gets in the way of your game, so we
recommend unticking the box.

56

This code will work with most
simple games, but you might
need to make some changes

.01

[Chapter Eleven]

57

 [LEARN TO CODE WITH SCRATCH]

>STEP-04
Set your starting scores
You can type some starting scores into the list on the Stage, but it’s
better to use a script to generate your high scores. Listing 2 does this.
It runs if it receives the broadcast reset high scores, but you can also
click the script once to reset your scores. To change the lowest score,
change the value in the set high score loop block. To change how
much scores go up by, edit the value in the change high score loop
block. Note: the pointed Operator blocks are shown as rounded in our
code because of limitations in the Scratchblocks software we’ve used
for laying out code for this book.

 [LEARN TO CODE WITH SCRATCH]

[Add a High Score Table]

.02

58

ESSENTIALS

[Chapter One]

>STEP-05
Add your high score code
Listing 3 checks the score and adds it to the high score table in the
correct position if it’s high enough. It also tells the player how well
they did. Add it to your high score sprite. Take care with building the
script that goes in the hole of the repeat until block. You’ll need to
drag in blocks in a similar order to this: or, >, item 1 of high scores,
high score loop, =, high score loop. When the next highest score is
announced, add blocks in the order: say Hello! for 2 secs, join hello
world, item 1 of high scores, -, high score loop.

>STEP-06
Insert it into your game
To finish, connect your high score script to your game. If the game doesn’t
already use the variable score, click on Variables and make that variable
for all sprites. You want the high score script to run when your game ends,
so you need to add some code at that point in your game. Add a block to
set score to your game’s score variable, if you’re not already using the
variable score in the game. Finally, add a block to broadcast check high
scores. To keep your high scores, simply save your game. When you save
a Scratch program, the list values – including your high score table in this
case – are saved too.

.03

58 [Chapter Eleven]

59

 [LEARN TO CODE WITH SCRATCH]

59[High Fliers][High fliers]

[CHAPTER TWELVE]

ESSENTIALS

BUILD A
SPACE
SHOOTER

59[Build a Space Shooter]

How to create an impressive 3D space shooter,
using nothing more than Scratch and some
clever coding techniques…

60

ESSENTIALS

[Chapter One]60 [Chapter Twelve]

Right: Press the
space bar to fire

the ship’s lasers to
destroy debris; if it

crashes into you,
your shield (green

bar) will deplete

cratch is a great programming language for testing out a
range of concepts. As we’ve seen Scratch programs typically
involve controlling one or more sprites on the screen.

Computer games where the characters are controlled from a distant
view are third-person games. Games can be more exciting when the
human player looks through the eyes of the central character in the
game, however. This is normally referred to as a first-person game.

In this article, some of the principles of constructing a first-
person game are introduced. The player is the pilot of a spaceship
that is drifting through a debris field. The main engine has
gone offline, causing the spaceship to drift through the debris
at a constant speed. However, the spaceship still has working
thrusters on the top, bottom, left, and right of the craft. The main
laser system is also operational. The heroic pilot has to shoot
through or dodge the debris. A point is awarded each time a piece
of debris is destroyed with the ship’s lasers. If the debris crashes
into the spaceship, then its shield will be damaged. After the
shield has been completely broken, the spaceship will explode.

S

61

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

Perspective
In real life, objects that are far away appear to be smaller. One example
of this is a set of railway tracks. Looking down railway tracks and into
the distance, the tracks appear to become closer together. This can be
applied to a computer game, where objects need to be shown as being
in the distance. When an object becomes closer to a player, the object
should become larger on the screen.

In this game, a one-point perspective is used. This means that distant
objects appear to come from the centre of the screen. Rather than draw
a lot of very small images at the vanishing point, it’s more sensible to
assume a viewing plane. The viewing plane corresponds to the distance at
which objects become visible. The two diagrams – at the top of this page
and overleaf – show the position of the viewing plane, and the vanishing
point as it appears on the screen. In the illustration of the viewing plane,
the z-axis points from the centre of the screen straight towards the player
and is perpendicular to the x-y plane.

[Build a Space Shooter]

Viewing plane

Infinity

y-axis

x-axis

62

ESSENTIALS

[Chapter One]62

If the spaceship has no velocity along the x-y plane, and an object
appears at the viewing plane with a position that’s not in the centre of
the screen, then the object appears to have a velocity that’s proportional
to its distance from the centre of the screen. This isn’t a real velocity,
but is the effect of the perspective used to display the z-axis. This effect
can be observed when driving along a straight road: a vehicle that’s on
the other side of the road, but far in the distance, appears to move to the
other side of the road as it approaches.

Spaceship and star field
In the game, the spaceship isn’t able to turn. Since the stars in
the distance are very far away, they wouldn’t appear to move
relative to the spaceship. Therefore, a static star field was drawn
on the stage background.

[Chapter Twelve]

The view from the cockpit

Vanishing point

y-axis

x-axis

63

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

The spaceship cockpit and
heads-up display should stay
in the foreground. This was
achieved by creating a sprite that
is as big as the screen. When
the game starts, the SpaceShip
sprite is set to be above other
sprites (Listing 1). Therefore, the
cockpit edges are displayed as
being in the foreground.

The horizontal and
vertical velocity components
of the spaceship are stored in
the vx and vy variables. These
were created as global variables,
since the velocity components
affect the motion of other sprites
on the screen. The shieldLeft
variable contains the number of
shield points left, and the score
contains the player’s score. The
shieldLeft variable was created
as a global variable, since the
other sprites that may hit the
cockpit need to be able to change its value; score was also created
as a global variable, since other sprites need to be able to increment
it. The game continues until there are no shield points left. When
the game starts, all four global variables are reset to zero and the
spaceship is shown to be working as normal. If there are no shield
points left, then the ship is shown to be destroyed by changing the
costume of the SpaceShip sprite. The thrusters on the right, left,
bottom and top of the spaceship are controlled by the cursor keys.
Since the spaceship is in space, there’s no friction to slow down its
movement. Therefore, firing the thrusters in one direction will build
up the velocity in that direction. To make it easier for the player to
see the current status of the game, the values of the vx, vy and score
variables were selected to be displayed at the bottom of the screen.

[Build a Space Shooter]

.01

64

ESSENTIALS

[Chapter One]64

Shield heads-up display
The number of shield points
remaining is shown on the left-
hand side of the screen. This
image is a sprite called Shield,
which has several costumes that
correspond to the different shield
states. The different costumes
were a copy of the first costume,
each with one more green
box removed.

When the green flag is pressed,
the Shield sprite is set to be just
below the main cockpit but above
the other sprites (Listing 3). This
means that the shield display
stays in the foreground. The
script for the Shield sprite waits
until the number of shield points
decreases and then switches
to the appropriate costume.

Lasers
The lasers were drawn as another
sprite. The size of the Laser
sprite was carefully matched to
the SpaceShip sprite by copying
the SpaceShip costume, to check
where the lasers would appear on
the screen.

When the green flag is pressed,
the Laser sprite is set to appear
just below the SpaceShip sprite
(Listing 4, overleaf). So it’s in
the foreground, but not as close
as the cockpit. The lasers are
fired by pressing the space bar.
To make the game a bit harder,

.02

[Chapter Twelve]

65

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

the lasers fire for a second, then
recharge for a second. This means
that the player should not hold
down the space bar, but only fire
the lasers when needed. Similar
to the SpaceShip sprite script,
the Laser sprite only recognises
the space bar when the number of
shield points is greater than zero.

Space debris
Two types of space debris were
created: LavaBall and Scrap.
The script for the LavaBall sprite
(Listing 5, overleaf) was copied
and modified slightly for the Scrap
sprite (Listing 6) to prevent both
sprites appearing at exactly the
same time. The two sprites were
also given two costumes, to show
them as being normal or exploded.

When the green flag is pressed, the LavaBall is placed below
the cockpit, shield display, and lasers, then it’s hidden from view.
The main loop continues while the game is being played. When the
SpaceShip sprite switches to the destroyed costume, it finishes the
game by stopping all scripts. This includes the main loops of the space
debris sprites.

To show that it’s in the distance, the LavaBall appears at the viewing
plane at 1% of its normal size. To make the game more interesting, its
starting position is chosen at random in the x-y plane. Due to the one-
point perspective used, objects that are closer to the edge of the screen
will quickly disappear from this location. Therefore, objects were chosen
to appear within a 100 by 100 box around the centre of the screen. The
initial position of the sprite, along the x- and y-axes, is stored in the
initial_x and initial_y variables. Since these variables are only
needed for this sprite, they were created as local variables for this sprite
only. The initial position components are rescaled to produce an apparent
velocity offset associated with the perspective. They are rounded to

.03

66

ESSENTIALS

[Chapter One]66

integers, since the sprite moves in numbers of pixels. The sprite is then
shown on the screen. Next, the script enters another loop that continues
until the sprite is full-size, has touched the edge of the screen, or has
been hit by the laser beams. The point where the two laser beams meet
was given a pink colour, so that this colour could be used to test if the
laser beams had hit the LavaBall. The relative velocity of the debris
along the z-axis can be raised by increasing the change size by 5 (5%)
command, or by reducing the size of the wait within the motion loop.

In this game, the space debris is spinning but is otherwise stationary
with respect to the rest of the universe. The spaceship is drifting
through the debris field at a constant speed, and starts the game at rest
in the x-y plane. When the spaceship thrusters are fired, the spaceship
moves along the x-y plane with respect to the universe. However, the
game is played from the pilot’s point of view, rather than from the point
of view of the universe or the space debris. Therefore, when the player’s
spaceship is moving to the left, the LavaBall is shown as moving to the
right. If the spaceship moves downwards, then the LavaBall moves
upwards. This can be demonstrated by looking at a cup on a desk: if the
person looking at the cup moves to the left, then the cup moves to the
right with respect to the person’s line of sight. The motion of the sprite

.04

[Chapter Twelve]

67

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

.05

68

ESSENTIALS

[Chapter One]68

.06

[Chapter Twelve]

69

 [LEARN TO CODE WITH SCRATCH] [LEARN TO CODE WITH SCRATCH]

[Build a Space Shooter]

is therefore the sum of the relative velocity and the apparent velocity,
due to the object being created at a point on the viewing plane
that’s not in the centre of the screen.

If the LavaBall has been hit by the laser beams, then the score is
incremented and the costume is switched to the exploded version.
The program waits for half a second for the player to view the
exploded sprite. If the LavaBall hasn’t been hit by the lasers and it
hasn’t touched the edge of the screen, then it has hit the spaceship.
If the LavaBall has hit the spaceship, then the number of shield
points is reduced by one and the LavaBall costume is switched to
the exploded version. If the LavaBall has missed the spaceship,
then it disappears behind the spaceship harmlessly. After these logic
conditions, the LavaBall sprite is hidden and reappears somewhere
else on the screen.

Possible extensions
Other features could be added to the game. The spaceship could collect
shield tokens or be able to use a wider laser beam to destroy more than
one object at once. Alternatively, the principles demonstrated within
this program could be used to create a first-person car racing game.

70

ESSENTIALS

[Chapter One]

[CHAPTER THIRTEEN]

To help you get started, here’s a handy
reference guide to Scratch’s interface, GPIO
functionality, and all of its code blocks

ESSENTIALS

70 [Chapter Thirteen]

QUICK
REFERENCE

71

 [LEARN TO CODE WITH SCRATCH]

71[Quick Reference]

BLOCK SHAPES
Blocks are shaped according to the way in which they are used.
There are six main types…

Blocks Palette:
This contains blocks
for programming,
which you drag into
the Scripts Area to
add them to your
code. There are
eight colour-coded
categories, selected
from the top, each
offering a different
selection of blocks.

Scripts Area:
This is the area where
scripts are assembled.
It can be accessed from
sprites or the Stage, by
selecting the Scripts
tab. Note that you can
create multiple scripts
for each sprite. Click the
tabs above to switch to
costumes or sounds.

Sprite List:
This contains
thumbnails of all your
sprites. Click one to
select it and edit its
scripts, costumes,
and sounds. The
icons above let you
paint a new sprite,
import one, or select
a random one.

Stage:
This is where your Scratch
creations come to life. Sprites
placed here can be resized
using the grow and shrink icons
above. Click the green flag to
start the project running, and
the red circle to stop it. There
are also icons to change the
view, including full-screen
presentation mode.

Hat Blocks: These are the Control blocks used to
start every script – when the green flag is clicked,
a key pressed, sprite clicked, or message received.

Stack Blocks: Shaped like jigsaw pieces to fit
under and over others, these perform the main
commands within scripts.

when clicked

say Hello! for 2 secs

72

ESSENTIALS

[Chapter One]

C Blocks: Generally resembling the letter C, these
Control blocks can be wrapped around others to
create loops or check for conditions.

Boolean Blocks: These hexagonal blocks contain
conditions that, when invoked, report a value
of true or false.

Reporter Blocks: Shaped with rounded edges,
these hold values – numbers or strings.
They include variables and lists.

Cap Blocks: There are only two of these, found
at the bottom of the Control category, used to
stop one script or all of them.

72 [Chapter Thirteen]

SCRATCH GPIO
Scratch on the Pi now features a GPIO server
for physical computing

In the latest version of Raspbian Jessie, Scratch features a Raspberry Pi
GPIO server to make it easier to drive connected LEDs, buzzers, HATS, and
other devices and components. First, you need to turn the server on via the
Edit menu or running a broadcast gpioserveron block. You can then
use broadcast blocks to configure and trigger individual GPIO pins, and

use pulse-width modulation on pin
18. Other functions include taking
a photo with the Camera Module,
and obtaining the time and IP
address. Certain Pi add-on boards
and HATs are also supported, set
up by creating an AddOn variable
and setting it to the respective
board name. For full details on
this and other GPIO functionality,
visit magpi.cc/1TYX7Jg.

Below: Using the
Pi’s GPIO pins

if

key space pressed?

item 1 of mylist

stop script

73

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

BLOCK
REFERENCE
GUIDE
A guide to all the blocks in each of the eight colour-coded
categories, including tips for their usage…

Motion

Motion blocks deal with the movement of sprites. They relate mainly
to the x and y position and direction of the sprite.

move 10 steps

turn 15 degrees

turn 15 degrees

point in direction 90

Moves sprite forward by
specified number of steps,
or backwards (using a minus
number). Useful for any project
involving movement.

Rotates sprite clockwise by
specified number of degrees.

Rotates sprite anticlockwise
by specified number of degrees.

Points sprite in the specified
direction: 0 = up, 90 = right,
180 = down, -90 = left. Other
numbers may also be used.

74

ESSENTIALS

[Chapter One]74 [Chapter Thirteen]

Points sprite towards mouse
pointer or another sprite. Can
be used for steering a sprite with
the mouse pointer.

point towards

go to x: 0 y: 0

go to

glide 1 secs to x: 0 y: 0

change x by 10

set x to 10

change y by 10

set y to 10

Moves sprite to specified x- and
y-position on stage. Useful for
resetting its position at the
beginning of a project.

Moves sprite smoothly to a
specified position over specified
length of time. One downside is
that it pauses the script while the
sprite is gliding.

Changes sprite’s x-position by
specified amount. Often used in
game controls.

Changes sprite’s y-position by
specified amount. Often used
in game controls.

Sets sprite’s y-position to
specified value. Can be used
for vertical scrolling.

Moves sprite to the location of
the mouse pointer or another
sprite. Useful for keeping a set
of sprites together.

Sets sprite’s x-position to
specified value. Can be used
for horizontal scrolling.

75

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

if on edge, bounce

x position

direction

Turns sprite in opposite direction
when it touches edge of stage.
Handy for preventing it partially
leaving the screen.

Reports sprite’s y-position
(ranges from -180 to 180).
Tick box to show on stage.

Reports sprite’s direction: 0 = up,
90 = right, 180 = down, -90 = left.
Tick box to show on stage.

Looks

Looks blocks are used to control the appearance of sprites and the stage.
Functionalities include changing costumes and applying graphic effects.

Changes sprite’s appearance by
switching to different costume.
Useful for animation.

Reports sprite’s x-position
(ranges from -240 to 240).
Tick box to show on stage.

y position

switch to costume costume1

next costume

costume#

say Hello! for 2 secs

Changes sprite’s costume to next
costume in the list (if at the end,
it jumps back to first costume).

Reports sprite’s current costume
number. Tick box to show on stage.

Displays sprite’s speech bubble
for specified amount of time.

76

ESSENTIALS

[Chapter One]76 [Chapter Thirteen]

say Hello!

think Hmm... for 2 secs

think Hmm...

change color effect by 25

clear graphic effects

change size by 10

set size to 100 %

size

show

Displays sprite’s speech bubble.
(To remove bubble, run this block
without any text.)

Displays sprite’s thought bubble
for specified amount of time.

Displays sprite’s thought bubble.
(To remove bubble, run this block
without any text.)

Changes selected visual
effect on a sprite by specified
amount. Choose from colour,
fisheye, whirl, pixelate, mosaic,
brightness, and ghost effects.

Sets selected visual effect
to a given number.

set color effect to 0

Clears all graphic effects
for a sprite.

Changes sprite’s size by
specified amount.

Sets sprite’s size to specified %
of original size.

Reports sprite’s size as % of
original size. Tick box to show
on stage.

Makes sprite appear on the stage
(after being hidden).

77

 [LEARN TO CODE WITH SCRATCH]

go back 1 layers

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

hide

go to front

Makes sprite disappear from the
stage. (Note that when a sprite
is hidden, other sprites cannot
detect it with a touching? block.)

Moves sprite in front of all other
sprites. If it’s large enough, it
could cover the entire stage.

Moves sprite back a specified
number of layers, so that it can
be hidden behind other sprites.

Sound

These blocks are related to playing various sounds, which can be
recorded or imported. 128 built-in MIDI instruments are also available.

Starts playing selected sound,
selected from pull-down menu,
and immediately goes on to
the next block even as sound
is still playing.

play sound meow

play sound meow until done

play drum 48 for 0.2 beats

Plays a sound and waits until
it has finished playing before
continuing with next block.

Stops playing all sounds.stop all sounds

Plays selected drum sound for
specified number of beats.

78

ESSENTIALS

[Chapter One]78 [Chapter Thirteen]

rest for 0.2 beats

play note 60 for 0.5 beats

set instrument to 1

change volume by -10

volume

change tempoby 20

set tempo to 60 bpm

tempo

Rests (plays nothing) for specified
number of beats.

Plays selected musical note
for specified number of beats.
(Clicking the pull-down arrow
brings up a two-octave keyboard,
but you can enter lower/higher
numbers directly.)

Sets the type of instrument
that the sprite uses for play
note blocks. (Each sprite has
its own instrument.)

Changes sprite’s sound volume by
specified amount. Volume ranges
from 0 to 100.

Reports sprite’s sound volume.
Tick box to show on stage.

Changes sprite’s tempo by
specified amount (in beats
per minute).

Sets sprite’s tempo to specified
value in beats per minute.

Reports sprite’s tempo in beats
per minute. Tick box to show
on stage.

79

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

Pen

Pen blocks enable a sprite to draw lines and shapes,
including its own ‘stamp’ image, on the stage when moved.

Clears all pen marks and stamps
from the stage.

clear

pen down

pen up

set pen color to

change pen color by 10

set pen color to 0

set pen shade to 50

change pen size by 1

Puts down sprite’s pen, so it will
draw as it moves.

Pulls up sprite’s pen, so it won’t
draw as it moves.

Sets pen’s colour, selected from
colour picker. Picking the colour
also changes the pen shade.

Changes pen’s colour
by specified amount.

Changes pen’s shade
(ranging from dark to light)
by specified amount.

Sets pen’s shade to specified
amount. It ranges from 0 (very
dark) to 100 (very light). The
default is 50, unless set with
colour picker.

change pen shade by 10

Sets pen’s colour to specified
value (ranging from 0 to 200).

Changes thickness of pen line.

80

ESSENTIALS

[Chapter One]80 [Chapter Thirteen]

set pen size to 1

stamp

Sets thickness of pen line.

Stamps sprite’s image onto
the stage.

Control

Control blocks provide functions for looping scripts and only running
them if certain conditions are met. The broadcast block can be used
with the Raspberry Pi’s GPIO pins.

when clicked

when space key pressed

when Sprite1clicked

wait 1 secs

forever

Runs the script below once the
green flag is clicked to start
the project.

Runs script below when specified
key is pressed. Useful for player
controls in games.

Runs script below when sprite
is clicked. Useful for menu
buttons/options.

Waits specified number of
seconds, then continues with
next block. Use it whenever
a pause is needed. It’s not as
accurate as using timer.

One of the most commonly
used blocks, it runs the
blocks inside it over and over,
in a never-ending loop.

81

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

repeat 10

broadcast

when I receive

if

Runs the blocks inside a specified
number of times. Common
uses include sprite animation
and movement.

Sends a message to all sprites,
then continues with the next
block without waiting for the
triggered scripts. It can also be
used to configure and trigger
the Raspberry Pi’s GPIO pins,
and take a photo with the Pi
Camera Module.

broadcast and wait

Sends a message to all sprites,
triggering them to do something,
and waits until they all finish
before continuing with next block.

Runs the script below it
when it receives specified
broadcast message.

forever if
The equivalent of an if
block within a forever one.
Continually checks whether
condition is true; whenever it is,
it runs the blocks inside.

One of the most widely used
blocks. If its condition is true,
it runs the blocks inside.

82

ESSENTIALS

[Chapter One]

wait until

82 [Chapter Thirteen]

repeat until

stop script

stop all

if

else

If condition is true, runs the
blocks inside the if portion;
if not, runs the blocks inside
the else portion.

Waits until condition is true,
then runs the blocks below.
Uses include waiting for a sprite
to move somewhere, a value to
pass a certain amount, or a reply
from another script.

Checks to see if condition is
false; if so, runs blocks inside
and checks condition again.
If condition is true, goes on
to the blocks that follow.

Stops the script. Handy for
disabling scripts, which can
be restarted with a broadcast
or key press.

Stops all scripts in all sprites. Can
be used to end or pause a project.

83

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

Sensing

Sensing blocks can be used to detect when one sprite touches another.
The sensor value block can be used to obtain a Pi GPIO pin’s input.

Reports true if sprite is touching
specified sprite, edge, or mouse
pointer. Useful for collision
detection in games.

touching ?

touching color ?

ask and wait

mouse x

Reports true if sprite is touching
specified colour (selected using
eyedropper). Again, handy for
collision detection.

color is touching ?

Reports true if first colour (within
sprite) is touching second colour
(in background or another
sprite). Both colours are selected
using eyedropper.

Asks a question on the screen and
stores keyboard input in answer.
Causes the program to wait until
the ENTER key is pressed or
checkmark is clicked.

Reports keyboard input from
most recent use of ask and wait
(shared by all sprites).

answer

Reports the x-position
of mouse pointer.

mouse y Reports the y-position
of mouse pointer.

84

ESSENTIALS

[Chapter One]84 [Chapter Thirteen]

mouse down?

key space pressed?

distance to

reset timer

timer

x position of Sprite1

loudness

loud?

Reports true if mouse button
is pressed.

Reports true if specified key is
pressed. Useful for controlling
moving objects, such as in games.

Reports distance from the
specified sprite or mouse pointer.
Useful in projects that require
precision sensing and movement.

Sets the timer to zero. Handy for
when a project or new game level
is started.

Reports the value of the timer
in seconds. (The timer is
always running.)

Reports a property or variable
of another sprite. Select from:
x-position, y-position, direction,
costume #, size, and volume.
Aids connectivity between sprites
in a project.

Reports the volume (from 1 to 100)
of sounds detected by the computer
microphone. More precise than
loud?, it can be used to make
sprites react to a certain voice level.

Reports true if computer
microphone detects a sound
volume greater than 30
(on scale of 1 to 100).

85

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

sensor button pressed ?

Reports the value of specified
sensor, such as one of the Pi’s
GPIO pins (or via a connected
PicoBoard or LEGO WeDo).

slider sensor value

Reports true if specified sensor
is pressed. Only used with a
connected PicoBoard.

Operators

These provide various mathematical and Boolean operations, along
with functions for handling strings.

+

-

/

pick random 1 to 10

<

=

Adds two numbers.

Subtracts second number
from first number.

*

Divides first number
by second number.

Multiplies two numbers.

Picks a random integer within
the specified range.

Reports true if first value is less
than second.

Reports true if two values
are equal.

86

ESSENTIALS

[Chapter One]86 [Chapter Thirteen]

>

and

or

not

join hello world

letter 1 of world

length of world

mod

round

sqrt of 10

Reports true if first value
is greater than second.

Reports true if both conditions
are true.

Reports true if either condition
is true.

Reports true if condition is false;
reports false if condition is true.

Concatenates (combines) the
two strings.

Reports the letter at the specified
position in a string.

Reports the number of letters
in a string.

Reports remainder from
division of first number
by second number.

Reports closest integer
to a number.

Reports result of selected
function (abs, sqrt, sin, cos, tan,
asin, acos, atan, ln, log, e^, or
10^) applied to specified number.

87

 [LEARN TO CODE WITH SCRATCH]

Variables

These blocks only appear in the palette once a new variable
(changeable value) or list (containing multiple items) is created.

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

Reports value of the variable.
Each created variable has one of
these blocks. Tick its box to show
it on the stage. Creating a variable
named ‘AddOn’ enables the use
of Raspberry Pi add-on boards
(see magpi.cc/1TYX7Jg).

variable

set variable to 0

show variable variable

hide variable variable

mylist

Sets variable to specified value.
Useful for resetting it at the start
of a project. This can also be
used to set the AddOn variable
to use add-on boards such as the
Explorer HAT, Pibrella, PiFace,
PiGlow, and Sense HAT.

change variable by 1

Changes selected variable by
specified amount. Uses include
altering the speed of an object,
level number, or game score.

Shows the selected variable’s
monitor on the stage.

Hides the selected variable’s
monitor so it is not visible
on the stage.

Reports all the items in the list.
(The items are separated by spaces.
However, if the items are individual
letters or digits, spaces are omitted.)

88

ESSENTIALS

[Chapter One]88 [Chapter Thirteen]

add thing to mylist

delete 1 of mylist

insert thing at 1 of mylist

replace item 1 of mylist with thing

item 1 of mylist

length of mylist

Adds the specified item to the
end of the list. The item can be a
number or a string of letters and
other characters.

Deletes one or all items from a list.
Choosing ‘last’ deletes the last item
in the list. Choosing ‘all’ deletes
everything from the list. Deleting
decreases the length of the list.

Inserts an item at the specified
position in the list. Choosing
‘any’ inserts at a random place in
the list. Choosing ‘last’ adds the
item to the end of the list. The
length of the list increases by 1.

Replaces an item in the list with
the specified value. Choosing
‘any’ replaces a random item in
the list. The length of the list
does not change.

Reports the item at the specified
position in the list. Choosing
‘any’ reports a random item
in the list.

Reports how many items
are in the list.

Reports true if the list contains
the specified item. Note that
the item must match exactly
to report true.

mylist contains thing

89

 [LEARN TO CODE WITH SCRATCH]

[Quick Reference]

 [LEARN TO CODE WITH SCRATCH]

90

ESSENTIALS

[Chapter One]

> CONQUER THE COMMAND LINE

> EXPERIMENT WITH SENSE HAT

> MAKE GAMES WITH PYTHON

> CODE MUSIC WITH SONIC PI

AVAILABLE NOW:

LEARN | CODE | MAKE

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

ESSENTIALS

91

 [LEARN TO CODE WITH SCRATCH]

OUT NOW IN PRINT
ONLY £3.99
raspberrypi.org/magpi

GET THEM
DIGITALLY:

from

https://www.raspberrypi.org/magpi/
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

ESSENTIALS

raspberrypi.org/magpi

https://www.raspberrypi.org/magpi/

