
1 6

DIFFICULTY : BEGINNER

Jacob Marsh

ModMyPi

THE RASCLOCK
Get yours today from ModMyPi

Raspberry Pi timekeeping with
a real time clock

In order to achieve its miniature size and low

price tag, several non-essential i tems usual ly

found on a desktop computer had to be omitted

from the Raspberry Pi. Laptops and computers

keep time when the power is off by using a pre-

instal led, battery powered 'Real Time Clock'

(RTC). An RTC module is not included with the

Raspberry Pi, which instead updates the date

and time automatical ly over the internet via

Ethernet or WiFi. Subsequently, your Pi wi l l

revert back to the standard date and time

settings when the network connection is

removed. For projects which have no internet

connection, you may want to add a low cost

battery powered RTC to help your Pi keep time!

The RasClock has been specifical ly designed for

use with the Raspberry Pi and plugs directly in to

the Raspberry Pi 's GPIO Ports. This article wil l

walk you through its instal lation!

Step 1 - plug it in!

To avoid any damage to the module, make sure

your Raspberry Pi is switched off and the RTC

battery is firmly seated before instal lation. Plug

the coin battery into the RTC by matching the

positive on the battery with the positive on the

module and then plug the RTC into the

Raspberry Pi 's GPIO pins. I t sits on the 6 GPIO

pins at the SD card end of the Raspberry Pi.

Step 2 - set-up

This RTC module is designed to be used in

Raspbian. So the first step is to make sure you

have the latest Raspbian Operating System (OS)

instal led on your Raspberry Pi

(http://www.raspberrypi.org/downloads).

Currently the module requires the instal lation of a

driver that is not included in the standard

Raspbian distribution; however a pre-compiled

instal lation package is avai lable which makes

setup nice and easy.

Make sure your Pi has internet access and grab

the instal lation package off the internet from an

LXTerminal window:

wget

http://afterthoughtsoftware.com/files/linux-

image-3.6.11-atsw-rtc_1.0_armhf.deb

(The wget command allows you to grab a fi le off

the internet by providing a URL).

sudo dpkg -i linux-image-3.6.11-atsw-

rtc_1.0_armhf.deb

(The dpkg command enables the management

https://www.modmypi.com/rasclock-raspberry-pi-real-time-clock-module
http://www.raspberrypi.org/downloads

1 7

of Debian packages. The -i instal ls the package,

or upgrades it i f i t is already instal led).

This may take a couple of minutes to complete.

sudo cp /boot/vmlinuz-3.6.11-atsw-rtc+

/boot/kernel.img

(The cp command stands for copy. Here, we

need to copy the RTC module's boot fi le to the

Raspberry Pi boot directory).

The next step involves editing the text in the

Raspberry Pi boot fi les. I usual ly use nano text

editor for these minor changes - it’s basic, pre-

instal led and easy to master. System commands

for nano are enabled by holding the CTRL key

(denoted as ^ in nano) whi lst pressing the

relevant command e.g. CTRL+X to exit.

We need to configure Raspbian to load the RTC

drivers at boot by adding the boot information to

the /etc/modules configuration fi le:

sudo nano /etc/modules

(This wil l open the 'modules' fi le within nano text

editor and al low you to make changes. To add

text simply use the arrows keys to browse to the

next l ine in the boot fi le and add the fol lowing

text, one per l ine. Then exit nano (CTRL+X) and

don't forget to save those changes!

i2c-bcm2708

rtc-pcf2127a

The final step in set-up is to register the RTC

module when the Raspberry Pi boots and set the

system clock from the RTC. When editing fi les

always fol low the instructions outl ined at the top

of the fi le denoted by #. For example, the fi le we

are just about to edit requires any text to be put

before the end of the fi le, denoted by 'exit 0'.

Open the required fi le for editing:

sudo nano /etc/rc.local

For Rev 1 . Raspberry Pi boards add the

fol lowing text:

echo pcf2127a 0x51 > /sys/class/i2c-

adapter/i2c-0/new_device

(sleep 2; hwclock -s) &

For Rev 2. Raspberry Pi boards add the

fol lowing text:

echo pcf2127a 0x51 > /sys/class/i2c-

adapter/i2c-1/new_device

(sleep 2; hwclock -s) &

Then reboot:

sudo reboot

Step 3 - using the RTC

After you reboot the Raspberry Pi you should be

able to access the module using the hwclock

command. The first time you use the clock you

wil l need to set the time. To copy the system time

into the clock module:

sudo hwclock –w

To read the time from the clock module:

sudo hwclock -r

To copy the time from the clock module to the

system:

sudo hwclock –s

That's it. . . you can now keep time using your

Raspberry Pi with no internet! Type hwclock into

your resident search engine for a load more

useful commands!

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

22

DIFFICULTY : BEGINNER

Jacob Marsh

ModMyPi

THE PI-LITE
Get yours today from ModMyPi

A plug and play LED matrix
board for the Raspberry Pi

The Pi-Lite is a versati le, plug and play, 1 26 LED

(9x1 4 Grid) matrix display for the Raspberry Pi.

Each pixel is individual ly addressable - so you

can display scrol l ing text, graphics and bar

graphs; basical ly anything that can fit in 1 26

pixels! I t’s a great starting place for doing

something visual with your Raspberry Pi.

The Pi-Lite comes as a complete, ful ly

assembled board that requires no soldering and

it’s designed to plug straight into the Raspberry

Pi’s GPIO ports. The matrix is control led by an

on-board ATMega 328 processor with pre-

loaded software and works equally well with a

Raspberry Pi using GPIO or with a PC, Mac or

Linux machine via the on-board FTDI connector.

You’ l l find a short beginner’s guide to set the Pi-

Lite up on the Raspberry Pi below.

Step 1 - setting up the Raspberry Pi
for basic Pi-Lite functions!

The Pi-Lite is as Ciseco product, so requires a

custom Wheezy Image to be loaded onto an SD

card and used for this task. This image has

reconfigured GPIO pins for serial access and the

Minicom terminal emulator that’s used to send

and receive characters from the serial port is pre-

instal led. You can set al l this up manually on your

version of Raspbian; however for ease of this

tutorial we’ l l use the custom image which can be

downloaded at the fol lowing l ink:

http://openmicros.org/Download/2013-05-25-

wheezy-raspbian-ciseco.img.zip

Simply unzip the image and load it onto an SD

card l ike the standard Raspbian distribution.

Step 2 - the fun stuff!

Make sure your Raspberry Pi is switched off and

then plug the Pi-Lite in. I t sits on top of the GPIO

ports within the footprint of the Raspberry Pi and

fits neatly inside a ModMyPi case. Boot your

Raspberry Pi up, log in and you’ l l be presented

with the Raspberry Pi command line. The Pi-Lite

wil l also auto-boot with a very cool sequence!

To access the Pi-Lite module via Minicom and

send scrol l ing text messages, enter the

command:

minicom -b 9600 -o -D /dev/ttyAMA0

Now, simply by typing, you can send any text to

the Pi-Lite which wil l be scrol led across

automatical ly. I t’s also possible to enter

Minicom’s command mode to change various

settings, such as the scrol l speed or pixel state.

https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix
http://openmicros.org/Download/2013-05-25-wheezy-raspbian-ciseco.img.zip

23

To enter command mode type $$$ (three dol lar

signs) - which wil l stop al l scrol l ing and Minicom

wil l respond with “OK”. Al l commands must be

sent as one string in UPPER case and

terminated with a carriage return (pressing

enter) . After receiving and carrying out a

command the Pi-Lite leaves command mode and

returns to scrol l mode. I f a command is not

received within a few seconds or a command is

inputted incorrectly, the command control wi l l be

terminated and the Pi-Lite wil l return to scrol l

mode.

As an example, we’ l l increase the scrol l ing speed

using the SPEED command. By default the scrol l

speed is set to 80, but it can be set anywhere

from 1 (very fast) to 1 000 (very slow). Let’s slow

our scrol l speed - simply type:

$$$SPEED200

Then hit enter. The Pi-Lite wil l automatical ly exit

command mode and re-enter scrol l mode. You

can now check to see that your scrol l speed has

increased!

There’s a ful l l ist of commands, as well as the

example scripts uti l ised in Step 3 below,

avai lable at the fol lowing l ink. You’ l l need these

to show bar graphs, turn on/off individual pixels,

and general ly make your Pi-Lite function:

https://www.modmypi.com/pi-lite-raspberry-

pi-led-matrix

Step 3 - running scripts!

What’s great about the Pi-Lite is that it enables

you to run custom Python scripts and

subsequently show graphics, repeated text

strings, read the weather, run a real-time Twitter

feed or display anything else you can imagine! I ’ l l

show you how to download and run some

example Python scripts, but you can always edit

them or write your own if you’re feel ing

adventurous! Please note, use upper case in the

commands where stated.

The Ciseco Wheezy image wil l already have a

suitable version of Python instal led. However,

you’ l l also need to instal l the “Git Control

System” and the “Python Serial Package”:

sudo apt-get install git

sudo apt-get install python-serial

We now need to pul l the l ibrary fi les from Github

and put them in a directory. First ensure you are

in your home directory by changing directory to

the standard home location:

cd /home/pi

Then create a directory for the Github example

fi les and browse to it:

mkdir git

cd git

Now obtain the Pi-Lite source code. This

includes the Python examples:

git clone

git://github.com/CisecoPlc/PiLite.git

You can now browse to the example scripts:

cd PiLite/Python_Examples

Some of the scripts can be run straight from the

command line via Python (CTRL+C wil l

terminate). For this example we’ l l run the

Pacman example script, which displays (you

guessed it) Pacman on the Pi-Lite! :

python Pacman.py

As with al l Raspberry Pi projects - the best way

to learn is to play and a great place to start is the

Pi-Lite!

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com
https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix

22

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

Buttons and switches with the
Raspberry Pi

Buttons and switches are a fundamental part of

‘physical’ computing. This beginner’s tutorial is

designed to teach the basics of physical operation

and programming with the Raspberry Pi using a

simple momentary switch setup.

The tutorial requires a few simple components that

are avai lable from ModMyPi (product codes in

brackets):

- Medium Breadboard (BB2) – For laying out our

components & circuit.

- Male to Female Jumper Wires (JW8) – For jumping

between the RPi & breadboard.

- PCB Mount Switch (TAC001) – A four point basic

momentary switch.

- ModMyPi’s Ridiculous Resistor Kit (RK995) – to

protect your Pi & calibrate the float voltage.

- 1 0KΩ Resistor - (Brown, Black, Black, Red, Brown)

- 1 KΩ Resistor - (Brown, Black, Black, Brown,

Brown)

- Breadboard Jumper Wire Kit (1 40KI) – For easy

jumping on the breadboard.

The circuit

The purpose of this circuit is to enable the Raspberry

Pi to detect a change in voltage and run a program

when the button (Switch 1) is pressed. This requires

three GPIO pins on our Raspberry Pi: the first wi l l

provide a signal voltage of 3.3V (Vcc), the next wil l

ground the circuit (GND), and the third wil l be

configured as an input (GPIO IN) to detect the

voltage change.

When a GPIO pin is set to input, i t doesn’t provide

any power and consequently has no distinct voltage

level; defined as ‘floating’ . We need the pin to be

capable of judging the difference between a high and

low voltage, however in a floating state it’s l iable to

incorrectly detect states due to electrical noise. To

enable the pin to see the difference between a high or

low signal we must ‘tie’ that pin, cal ibrating it to a

defined value; 3.3V in this case!

To tie the input pin, we connect it to the Vcc 3.3V pin,

hence when Switch 1 is open, the current flows

through GPIO IN and reads high. When Switch 1 is

closed, we short the circuit and the current is pul led

to GND; the input has 0V, and reads low! The large

R1 (1 0kΩ) resistor in this circuit ensures that only a

https://www.modmypi.com/shop

23

l i ttle current is drawn when the switch is pressed. I f

we don’t use this resistor, we are essential ly

connecting Vcc directly to GND, which would al low a

large current to flow, potential ly damaging the Pi! To

make the circuit even safer in case we get something

wrong, we add the R2 (1 kΩ) resistor to l imit the

current to and from GPIO IN.

The switch

Four point switches are wired in a very similar

manner to two point switches. They’re simply more

versati le, as you can have multiple isolated inputs into

the same switching point. Checking the diagrams,

Pins 1 & 2 are always connected, as are Pins 3 & 4.

However, both pin pairs are disconnected from each

other when the button is not pressed e.g. Pins 1 & 2

are isolated from Pins 3 & 4. When the button is

pressed the two sides of the switch are l inked and

Pins 1 , 2, 3 & 4 are al l connected!

In ‘momentary’ switches the circuit disconnects when

pressure is removed from the button, as opposed to

‘toggle’ switches when one push connects and the

next push disconnects the internal switch circuit.

Where does it all go?

WARNING. When hooking up to GPIO points on your

Raspberry Pi care must be taken, as connecting the

wrong points could permanently fry your Pi. Please

use a GPIO cheat-sheet, and double check

everything before switching it on. I wi l l denote each

GPIO point by its name, and physical location, for

example GPIO P1 7 is actual ly located at Pin 1 1 ,

denoted: GPIO P1 7 [Pin 1 1]. The irregularities are a

result of the pin names being referenced by the on

board chip rather than their physical location.

1 . Connect Pi to Ground Rail . Use a black jumper

wire to connect GPIO GND [Pin 6] on the Pi to the

Negative rai l on the breadboard – the rai l on the edge

of the board with the negative sign (-) .

2. Connect Pi 3.3V to Positive Rail . Use a red jumper

wire to connect GPIO 3.3V [Pin 1] on the Pi to the

Positive rai l on the breadboard – the edge rai l with the

positive sign (+).

3. Plug your switch in. When breadboarding, make

sure al l of the legs are in separate rows. To achieve

this straddle the central channel on the breadboard.

4. Add 1 0kΩ Resistor. Connect this from Switch Pin

1 , to the positive (+) rai l of the breadboard.

Orientation of standard fi lm resistors is unimportant.

5. Connect Switch to Ground. Use a breadboard

jumper wire to hook Switch Pin 3 to the ground (-)

rai l .

6. Connect Switch to 1 kΩ Resistor. Add this resistor

between Switch Pin 1 and the 1 0kΩ Resistor and

take it to a clear rai l .

7. Connect Switch to Signal Port. We’ l l be using

GPIO P1 7 to detect the 3.3V signal when the switch

is pressed. Simply hook up a jumper between GPIO

P1 7 [Pin 1 1] on the Pi and the 1 kΩ Resistor rai l .

That’s our circuit bui lt! Next time, we’ l l write a simple

program in Python to run when we press the switch!

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

2020

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

Buttons and switches with the
Raspberry Pi - part 2

Buttons and switches are a fundamental part of

physical computing. This beginners tutorial is

designed to teach the basics of physical

operation with the Raspberry Pi using a simple

momentary switch setup. In part one in Issue 1 7,

we discussed and bui lt our switch circuit. In this

part, we wil l go through the steps of

programming and interacting between the Pi and

our components. The coding part of this tutorial

is in Python, a widely used general purpose

language. I t is also very readable, so we can

break down and explain the function of each l ine

of code. The purpose of our code wil l be to read

the I/O pin when the switch is pressed!

Using a switch

I f you have not already done so, start X by typing

startx and load the program IDLE3. Since we

are starting a new project, open up a new

window File>>New Window. Remember that

Python is case sensitive and indentation is

fundamental. Indentation, which is used to group

statements, wi l l occur automatical ly as you type

commands, so make sure you stick to the

suggested layout. The first l ine of our code

imports the Python l ibrary for accessing the

GPIO.

import RPi.GPIO as GPIO

Next, we need to set our GPIO pin numbering, as

either the BOARD numbering or the BCM

numbering. BOARD numbering refers to the

physical pin numbering of the headers. BCM

numbering refers to the channel numbers on the

Broadcom chip. Either wil l do, but I personal ly

prefer BCM numbering. I f you're confused, use a

GPIO cheat sheet to clarify which pin is which!

GPIO.setmode(GPIO.BCM)

Now you need to define the GPIO pins as either

inputs or outputs. In Part 1 , we set BCM Pin

1 7:BOARD Pin 1 1 (GPIO P1 7 [Pin 1 1]) as our

input pin. So our next l ine of code tel ls the GPIO

library to set this pin as an input.

GPIO.setup(17, GPIO.IN)

In part 1 of the tutorial , the input pin was tied high

by connecting it to our 3.3V pin. The purpose of

our Python program is to check to see if the input

pin has been brought low e.g. when the button

has been pressed. To check the high/low status

of the pin we're going to use a True or False

statement within an infinite loop. We need to tie

https://www.modmypi.com/shop

21

our True statement to the high value of our input

pin. To do so we need to create a new variable

cal led input_value and set it to the current value

of GPIO P1 7 [Pin 1 1].

while True:
input_value = GPIO.input(17)

The next step is to add a condition that wil l print

something when the button is pressed. For this,

we'l l use a False condition. The input_value is

False when the button is pressed and the

associated signal is pul led low. This can be

checked with a simple Python it statement.

if input_value == False:
print("Who pressed my button?")

When the button is pressed the program wil l now

display the text: Who pressed my button?, feel

free the change this to anything you want.

while input_value == False:
input_value = GPIO.input(17)

The last two lines in the above code are very

important, they create a loop that tel ls Python to

keep checking the status of GPIO P1 7 [Pin 1 1]

unti l i t's no longer low (button released). Without

this, the program would loop while the button is

sti l l being pressed meaning the message wil l be

printed multiple times on the screen before you

release the button. The final program should

look l ike this in python:

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN)
while True:

input_value = GPIO.input(17)
if input_value == False:

print("Who pressed my button?")
while input_value == False:

input_value = GPIO.input(17)

Save the fi le as button.py. In order to run the

program, open a new terminal window on the Pi

and type the fol lowing command:

sudo python button.py

At first nothing wil l happen, but if you press the

button the program wil l print the defined

message. To exit a running Python script, simply

hit CTRL+C on the keyboard to terminate. I f i t

hasn't worked don't worry. First check the circuit

is connected correctly on the breadboard as

defined in part 1 , then that the jumper wires are

connected to the correct pins on the GPIO port.

I f i t sti l l fai ls to work, double check each l ine of

the program is correct remembering that python

is case-sensitive and checking if indentation is

correct. I find that typing the code out by hand

wil l give better results than a simple copy/paste.

This is a deceptively simple program that can be

used for many purposes. The same code could

be used to read when the pins of separate

devices, such as a sensor or external micro-

control ler, have been pul led high or low.

Adding an LED

We'l l carry on using the same breadboard as

before but wil l require a couple extra

components:

- An LED (l ight emitting diode), any colour you

l ike.

- ModMyPi’s Ridiculous Resistor Kit (RK995)

* 330Ω Resistor - (Orange, Orange, Black,

Black, Brown)

An output pin on the GPIO port can be set to

either 0V (low) or 3.3V (high). Our expansion

circuit wi l l wire up an LED between an output pin

and a ground pin on the Raspberry Pi 's GPIO

port. We’ l l be using Python to trigger our output

pin high, causing a current to pass through the

LED, l ighting it up! We also add a 330Ω Resistor

to l imit the current that is passed through the

LED.

For this exercise we wil l connect the LED to

GPIO P1 8 [Pin 1 2] which wil l be defined later in

20

our program as an output. We wil l use the same

ground pin GPIO GND [Pin 6] as before, which is

already connected to the Negative rai l (-) on our

breadboard.

Building the Circuit

1 . Connect GPIO output to breadboard. Use a

green jumper wire to connect GPIO P1 8 [Pin1 2]

on the Pi to an empty to row on the breadboard

2. Add an LED. Insert the long leg (anode) of the

LED into the same row as the green jumper wire

and insert the shorter leg (cathode) into another

empty row on the breadboard. Note: Make sure

the LED is inserted the correct way round as it

wi l l only al low current to pass through it in one

direction. I f i t's wrong it won't l ight up!

3. Add 330Ω Resistor. Connect the resistor

between the cathode of the LED and the

Negative rai l (-) on the breadboard. This protects

our LED from burning out by way of too much

current.

And that's our circuit bui lt!

Next time

Next time, we’ l l add a timer function to our script

and a trigger function for our LED. As the script

wi l l be more complicated, it requires a proper

clean-up function, so we’ l l code that in too!

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

1 7

What to measure?

We want to measure the temperature, humidity and

local l ight levels both inside and outside of the

containing box to see what is happening in the local

environment. This information wil l be placed in a

MySQL database for later analysis.

Putting in the sensors

The BMP085 and TSL2561 are soldered onto a

prototype board with I2C coming in from the

Raspberry Pi. There is a plug to further extend the

I2C bus to an encased temperature and humidty

sensor outside of the box (the AM231 5). The

AM231 5 proved to be problematic (see below), but

the other I2C sensors worked like champions. The

DHT22 inexpensive indoor temperature and

humidity sensor worked well with additional

software to fi l ter out bad readings. This caused

problems with the RasPiConnect control software

because of the unrel iable delay to good readings

(see below). We control the fan with a relay that

connects directly to the output of the solar cel ls

(6.5V on a good day). We figured that the fan

would be used on the sunniest days. The fan and

relay coi l each take 70mA. We are investigating

replacing the relay with a lower energized coi l

current (see Sainsmart: http://goo.gl/aSTU0z) as

1 40mA really hurts our power budget.

Monitoring the sensors and fan
remotely

Project Curacao is monitored remotely through the

Internet by the use of SSH and RasPiConnect

(www.milocreek.com). Each of the main

subsystems has a different display. The

environmental display has a graph for

temperature/humidity and luminosity/barometric

pressure/fan state (shown below). The software for

generating this display is also on

github.com/projectcuracao.

Problems with sensors

There were two major problems with sensors in

this design. First of al l the AM231 5 is an odd duck.

I t has a power down sequence that requires it to be

addressed twice (once to wake up and once to

read - for example it takes two invocations of

i2cdetect to see the sensor) and secondly, it just

isn't rel iable using 3.3V for I2C. A solution might be

to put a level converter in for the device, but since

we had a 5V I2C on the battery watchdog Arduino,

we decided to add it to the watchdog. Secondly,

the DHT22 has some very tricky timing in order to

read it from the Raspberry Pi. Since the Raspberry

Pi is a multitasking machine, you can't depend on

the timing 1 00%. This means that readings from

the DHT22 fai l on a regular basis. The way to fix

this problem is to keep reading it unti l the correct

format is received. However, you can only read it

every 3 seconds. This plays havoc with an HTTP

based monitoring system such as RasPiConnect

with 1 0-1 5 second timeouts. This problem was

fixed by reading the DHT22 in the main software

and having RasPiConnect read the last reading

from the MySQL database.

What is coming up?

Part 3 goes through the Raspberry Pi Camera

Subsystem and Part 4 describes the software

system used for Project Curacao. Al l of the code

used in this article is posted on GitHub at

github.com/projectcuracao.

More discussion on Project Curacao at:

http://switchdoc.blogspot.com

http://github.com/projectcuracao
http://github.com/projectcuracao
http://www.milocreek.com
http://goo.gl/aSTU0z
http://switchdoc.blogspot.com

2018

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

Buttons and switches with the
Raspberry Pi - part 3

In our previous tutorial we bui lt a simple button circuit

connected to our Raspberry Pi via the GPIO ports and

programmed a Python script to execute a command when

the button was pressed. We then expanded our circuit

with an LED. In this tutorial , we wil l be expanding our

script to include timer and trigger functions for our LED. As

the script wi l l be more complicated, it requires a proper

clean-up function. Start by reading the previous two

tutorials featured in Issues 1 7 and 1 8, before trying this

one!

Adding LED control code

Now that our LED expansion circuit has been bui lt, we wil l

add some code into our previous program. This additional

code wil l make the LED flash on and off when the button is

pressed. Start by booting your Raspberry Pi to the

Raspbian GUI (startx) . Then start IDLE3 and open the

previous example program button.py. Save this fi le as

button_led.py and open it.

Since we want the LED to flash on and off, we wil l need to

add a time function to al low Python to understand the

concept of time. We therefore need to import the time

module, which al lows various time related functional ity to

be used. Add another l ine of code underneath l ine 1 :

import time

Next, we need to define GPIO P1 8 [Pin 1 2] as an output to

power our LED. Add this to our GPIO.setup section (l ine

4), below the input pin setup l ine:

GPIO. setup(18, GPIO. OUT)

Once GPIO P1 8 [Pin 1 2] has been set as an output, we

can turn the LED on with the command GPIO.output(1 8,

True). This triggers the pin to high (3.3V). Since our LED

is wired directly to this output pin, i t sends a current

through the LED tha turns it on. The pin can also be

triggered low (0V) to turn the LED off, by the command

GPIO.output(1 8, False).

Now we don’t just want our LED to turn on and off,

otherwise we would have simply wired it to the button and

a power supply. We want the LED to do something

interesting via our Raspberry Pi and Python code. For

example, let us make it flash by turning it on and off

multiple times with a single press of the button!

In order to turn the LED on and off multiple times we are

going to use a for loop. We want the loop to be triggered

when the button has been pressed. Therefore, it needs to

be inserted within the if condition 'I f input_value == False:',

that we created in our original program. Add the fol lowing

below the l ine 'print(''Who pressed my button! ”) ' (l ine 9),

making sure the indentation is the same:

for x in range(0, 3):

https://www.modmypi.com/shop

19

Any code below this function wil l be repeated three times.

Here the loop wil l run from 0 to 2, therefore running 3

times. Now we wil l add some code in the loop, such that

the LED flashes on and off:

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

The LED is triggered on with the command

GPIO.output(1 8, True). However, since we do not want to

immediately turn it back off, we use the function

time.sleep(1) to sleep for one second. Then the LED is

triggered off with the GPIO.output(1 8,False) command.

We use the time.sleep(1) function again to wait before the

LED is turned back on again.

The completed program should be of the form:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

GPIO. setup(17, GPIO. IN)

GPIO. setup(18, GPIO. OUT)

while True:

input_value = GPIO. input(17)

if input_value == False:

print("Who pressed my button?")

for x in range(0, 3):

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

while input_value == False:

input_value = GPIO. input(17)

Save the fi le and open a new terminal window. Then type

the fol lowing command:

sudo python button_led. py

This time when we press the button a message wil l appear

on the screen and the LED should also flash on and off

three times!

To exit the program script, simply type CTRL+C on the

keyboard to terminate it. I f i t hasn't worked do not worry.

Do the same checks we did before. First, check the circuit

is connected correctly on the breadboard. Then check that

the jumper wires are connected to the correct pins on the

GPIO port. Double check the LED is wired the right way

round. I f the program sti l l fai ls, double check each l ine of

the program, remembering that Python is case-sensitive

and correct indentation is needed.

I f is everything is working as expected, you can start

playing around a bit with some of the variables. Try

adjusting the speed the LED flashes by changing the value

given to the time.sleep() function.

You can also change the number of times that the LED

flashes by altering the number times that the for loop is

repeated. For example if you wanted the LED to flash 30

times, change the loop to: for x in range(0, 30).

Have a go playing around with both these variables and

see what happens!

Exiting a program cleanly

When a program is terminated (due to an error, a keyboard

interrupt (CTRL+C) or simply because it's come to an

end), any GPIO ports that were in use wil l carry on doing

what they were doing at the time of termination. Therefore,

if you try to run the program again, a warning message wil l

appear when the program tries to 'set' a pin that’s already

in use from the previous execution of the program. The

program wil l probably run fine, but it is good practice to

avoid these sorts of messages, especial ly as your

programs become larger and more complex!

To help us exit a program cleanly we are going to use the

command GPIO.cleanup(), which wil l reset al l of the GPIO

ports to their default values.

For some programs you could simply place the

GPIO.cleanup() command at the end of your program.

This wil l cause the GPIO ports to be reset when the

program finishes. However, our program never ends by

itself since it constantly loops to check if the button has

been pressed. We wil l therefore use the try: and except

syntax, such that when our program is terminated by a

keyboard interruption, the GPIO ports are reset

automatical ly.

The fol lowing Python is an example of how the try: and

except command can be used together to exit a program

cleanly.

20

Place any variable definitions and

GPIO set-ups here

try:

Place your main block of code or

loop here

except KeyboardInterrupt:

GPIO. cleanup()

Program will end and GPIO ports

cleaned when you hit CTRL+C

finally:

GPIO. cleanup()

Note that Python wil l ignore any text placed after hash tags

(#) within a script. You may come across this a lot within

Python, since it is a good way of annotating programs with

notes.

After we have imported Python modules, setup our GPIO

pins, we need to place the main block of our code within

the try: condition. This part wi l l run as usual, except when

a keyboard interruption occurs (CTRL+C). I f an

interruption occurs the GPIO ports wil l be reset when the

program exits. The final ly: condition is included such that if

our program is terminated by accident, i f there is an error

without using our defined keyboard function, then the

GPIO ports wil l be cleaned before exit.

Open button_led.py in IDLE3 and save it as

button_cleanup.py. Now we can add the code previously

described into our script. The finished program should

have the form:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

GPIO. setup(17, GPIO. IN)

GPIO. setup(18, GPIO. OUT)

try:

while True:

input_value = GPIO. input(17)

if input_value == False:

print("Who pressed my button?")

for x in range(0, 3):

GPIO. output(18, True)

time. sleep(1)

GPIO. output(18, False)

time. sleep(1)

while input_value == False:

input_value = GPIO. input(17)

except KeyboardInterrupt:

GPIO. cleanup()

Program will end and GPIO ports cleaned

when you hit CTRL+C

finally:

GPIO. cleanup()

Notice that only the loop part of the program is within the

try: condition. Al l our imports and GPIO set-ups are left at

the top of the script. I t is also important to make sure that

al l of your indentations are correct!

Save the fi le. Then run the program as before in a terminal

window terminal:

sudo python button_cleanup. py

The first time you run the fi le, you may see the warning

message appear since the GPIO ports have not been reset

yet. Exit the program with a keyboard interruption

(CTRL+X). Then run the program again and hopeful ly this

time no warning messages wil l appear!

This extra code may seem like a waste of time because the

program sti l l runs fine without it! However, when we are

programming, we always want to try and be in control of

everything that is going on. I t is good practice to add this

code, to reset the GPIO when the progam is terminated.

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com

2036

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

GPIO Sensing: Motion
Detection - Part 1

In previous tutorials in Issues 1 5 to 1 9 of The

MagPi, the basics behind physical computing

with the Raspberry Pi computer were introduced.

The previous articles covered basic Python

programming and Board/BCM GPIO numbering,

which are both used in this tutorial .

In this tutorial , a passive infrared sensor (PIR) is

used instead of a switch. The PIR is used to

activate a print statement within a Python

program when motion is detected.

PIR sensors

PIR sensors provide a simple way of detecting

motion. Everything on the Earth emits a small

amount of infrared radiation, where hotter objects

emit more radiation. PIR sensors are able to

detect a change in infrared levels within their

detection zone. For example, when someone

comes into a room the PIR detects the infrared

radiation change.

Assembling the circuit

For this tutorial , the fol lowing parts are required:

* a breadboard

* 6 x male to female jumper wires

* a PIR Sensor

All of the components can be purchased from the

ModMyPi onl ine shop.

1 . Use three male to female jumper wires and

connect the female ends to the PIR sensor

terminals. The three pins on the PIR are label led

as: Red; PIR-VCC (3-5VDC in), Brown; PIR-OUT

(digital out) and Black; PIR-GND (ground).

2. Plug the male jumper wire connected to PIR-

VCC into the positive rai l of the breadboard, plug

the PIR-GND wire into your negative rai l and

plug the PIR-OUT wire into any other blank rai l .

https://www.modmypi.com/shop

37

3. Use a black jumper wire to connect GPIO

GND [Pin 6] on the Raspberry Pi to the negative

rai l of the breadboard, to which the PIR-GND

wire is already connected.

4. Use a red jumper wire to connect GPIO 5V

[Pin 2] on the Raspberry Pi to the positive rai l of

the breadboard, to which the PIR-VCC wire has

already been connected.

5. Connect GPIO 7 [Pin 26] to the same rai l as

the PIR-OUT.

Sensing with Python

The status of the PIR can be checked in a similar

way as the switch mentioned in previous

tutorials. However, the PIR does not need a pul l-

up resistor since it outputs 0V or 3V3. The GPIO

7 [Pin 26] connected to the PIR-OUT just needs

to be set as an input pin.

Type in the fol lowing using the nano text editor:

import RPi. GPIO as GPIO

import time

GPIO. setmode(GPIO. BCM)

PIR = 7

GPIO. setup(PIR, GPIO. IN)

try:

print("PIR Module Test")

print("(CTRL+C to exit)")

time. sleep(2)

print "Ready"

while True:

if GPIO. input(PIR):

print("Motion detected! ")

time. sleep(1)

except KeyboardInterrupt:

print("Quitting")

GPIO. cleanup()

The program includes several steps that were

introduced in the previous articles. At the start

there are two import statements to al low the

GPIO and time functions to be used.

import RPi. GPIO as GPIO

import time

Then there is the setmode function,

GPIO. setmode(GPIO. BCM)

to configure the GPIO in BCM numbering mode.

More information on the BCM numbering

scheme can be found at:

http://el inux.org/RPi_Low-level_peripherals

After the GPIO setmode, a variable PIR is used

to store the connection associated with the PIR

digital out. This connection number is used to

setup the associated pin as an input with:

GPIO. setup(PIR, GPIO. IN)

The example program includes a try-except

statement, to clean up the GPIO connections

when the program exits. Inside the try statement

there are some print statements and a while loop.

The while loop polls the GPIO input every

second. I f the GPIO pin is high then,

Motion detected!

wil l be printed on the screen.

PIR settings

On the PIR, there are two potentiometers that

adjust the amount of time the PIR is high and

also its sensitivity. Fol low the label l ing on the

http://elinux.org/RPi_Low-level_peripherals

38

board, which indicates the function of each

potentiometer. I f the program continues to report

that motion is detected then try turning down the

sensitivity of the PIR. I f the potentiometer is

turned clockwise then sensitivity wil l be

increased.

GPIO callbacks

In the previous examples, GPIO poll ing has been

used to check the state of a GPIO input pin.

However, the GPIO also al lows callbacks. This

means that a pin can be set to cal l a Python

function if the state of the input pin changes.

This is much better than pol l ing since the

function is cal led immediately, without the need

for a high pol l ing frequency.

This time when the program runs, the CPU of the

Raspberry Pi waits for the signal on the PIR to

rise. Once the signal rises, the function

cal lback_up is cal led. The callback function is

passed the channel number of the GPIO pin that

went high. Possible GPIO tests are

GPIO. RISING , GPIO. FALLING and

GPIO. BOTH .

Next time

That's it, a very simple method of connecting a

low cost movement sensor to the Raspberry Pi.

The next article wil l include a buzzer, some LEDs

and a magnetic door lock. These parts wil l be

used to bui ld a low cost Raspberry Pi based

security system!

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

import RPi. GPIO as GPIO

import time

def callback_up(channel):

print("Up detected on channel %s" % channel)

PIR = 7

GPIO. setmode(GPIO. BCM)

GPIO. setup(PIR, GPIO. IN)

try:

GPIO. add_event_detect(PIR, GPIO. RISING, callback=callback_up)

while 1:

time. sleep(100)

except KeyboardInterrupt:

print("Cleaning up the GPIO")

GPIO. cleanup()

http://www.modmypi.com
http://www.modmypi.com

2026

SKILL LEVEL : BEGINNER

Jacob Marsh

ModMyPi

PHYSICAL COMPUTING
Brought to you by ModMyPi

GPIO Sensing: Using 1 -Wire
temperature sensors - Part 2

1 -Wire sensors

In previous tutorials we’ve outl ined the

integration of simple sensors and switches with

the Raspberry Pi. These components have had a

simple on/off or high/low output, which is sensed

by the Raspberry Pi. Our PIR movement sensor

tutorial in Issue 21 , for example, simply says

“Yes, I ’ve detected movement”.

So, what happens when we connect a more

advanced sensor and want to read more

complex data? In this tutorial we wil l connect a 1 -

Wire digital thermometer sensor and programme

our Raspberry Pi to read the output of the

temperature it senses!

In 1 -Wire sensors al l data is sent down one wire,

which makes it great for microcontrol lers and

computers, such as the Raspberry Pi, as it only

requires one GPIO pin for sensing. In addition to

this, most 1 -Wire sensors wil l come with a unique

serial code (more on this later) which means you

can connect multiple units without them

interfering with each other.

The sensor we’re going to use in this tutorial is

the Maxim DS1 8B20+ Programmable Resolution

1 -Wire Digital Thermometer.

The DS1 8B20+ has a

similar layout to transistors,

cal led the TO-92 package,

with three pins: GND, Data

(DQ) and 3.3V power l ine

(VDD) . You also need some

jumper wires, a breadboard

and a 4.7kΩ (or 1 0kΩ)

resistor.

The resistor in this setup is used as a 'pul l-up' for

the data-l ine, and should be connected between

the DQ and VDD l ine. I t ensures that the 1 -Wire

data l ine is at a defined logic level and l imits

interference from electrical noise if our pin was

left floating. We are also going to use GPIO 4

[Pin 7] as the driver pin for sensing the

thermometer output. This is the dedicated pin for

1 -Wire GPIO sensing.

Hooking it up

1 . Connect GPIO GND [Pin 6] on the Raspberry

Pi to the negative rai l on the breadboard.

2. Connect GPIO 3.3V [Pin 1] on the Raspberry

Pi to the positive rai l on the breadboard.

3. Plug the DS1 8B20+ into your breadboard,

https://www.modmypi.com/shop

27

ensuring that al l three pins are in different rows.

Famil iarise yourself with the pin layout, as it is

quite easy to hook it up backwards!

4. Connect DS1 8B20+ GND [Pin 1] to the

negative rai l of the breadboard.

5. Connect DS1 8B20+ VDD [Pin 3] to the positive

rai l of the breadboard.

6. Place your 4.7kΩ resistor between DS1 8B20+

DQ [Pin 2] and a free row on your breadboard.

7. Connect that free end of the 4.7kΩ resistor to

the positive rai l of the breadboard.

8. Final ly, connect DS1 8B20+ DQ [Pin 2] to

GPIO 4 [Pin 7] with a jumper wire.

That’s it! We are now ready for some

programming!

Programming

With a l ittle set up, the DS1 8B20+ can be read

directly from the command line without the need

for any Python programming. However, this

requires us to input a command every time we

want to know the temperature reading. In order

to introduce some concepts for 1 -Wire

interfacing, we wil l access it via the command

line first and then we wil l write a Python program

which wil l read the temperature automatical ly at

set time intervals.

The Raspberry Pi comes equipped with a range

of drivers for interfacing. However, it’s not

feasible to load every driver when the system

boots, as it increases the boot time significantly

and uses a considerable amount of system

resources for redundant processes. These

drivers are therefore stored as loadable modules

and the command modprobe is employed to boot

them into the Linux kernel when they’re required.

The fol lowing two commands load the 1 -Wire

and thermometer drivers on GPIO 4. At the

command line enter:

sudo modprobe w1-gpio

sudo modprobe w1-therm

We then need to change directory to our 1 -Wire

device folder and l ist the devices in order to

ensure that our thermometer has loaded

correctly. Enter:

cd /sys/bus/w1/devices

ls

In the device l ist, your sensor should be l isted as

a series of numbers and letters. In my case, the

device is registered as 28-000005e2fdc3. You

then need to access the sensor with the cd

command, replacing the serial number with that

from your own sensor. Enter:

cd 28-000005e2fdc3

The sensor periodical ly writes to the w1_slave

fi le. We can use the cat command to read it:

28

cat w1_slave

This yields the fol lowing two lines of text, with the

output t showing the temperature in mil l i -

degrees Celsius. Divide this number by 1 000 to

get the temperature in degrees, e.g. the

temperature reading we’ve received is 23.1 25

degrees Celsius.

72 01 4b 46 7f ff 0e 10 57 : crc=57 YES

72 01 4b 46 7f ff 0e 10 57 t=23125

In terms of reading from the sensor, this is al l

that’s required from the command line. Try

holding onto the thermometer for a few seconds

and then take another reading. Spot the

increase? With these commands in mind, we can

now write a Python program to output our

temperature data automatical ly.

Python program

Our first step is to import the required modules.

The os module al lows us to enable our 1 -Wire

drivers and interface with the sensor. The time

module al lows the Raspberry Pi to define time,

and enables the use of time periods in our code.

import os

import time

We then need to load our drivers:

os. system(' modprobe w1-gpio')

os. system(' modprobe w1-therm')

The next step is to define the sensor’s output fi le

(the w1_slave fi le) as defined above. Remember

to uti l ise your own temperature sensor’s serial

code!

temp_sensor = ' /sys/bus/w1/devices/28-000005e2

fdc3/w1_slave'

We then need to define a variable for our raw

temperature value, temp_raw; the two lines

output by the sensor, as demonstrated by the

command line example. We could simply print

this statement now, however we are going to

process it into something more usable. To do this

we open, read, record and then close the

temp_sensor fi le. We use the return function

here, in order to recal l this data at a later stage in

our code.

def temp_raw():

f = open(temp_sensor, ' r')

lines = f. readlines()

f. close()

return lines

First, we check our variable from the previous

function for any errors. I f you study our original

output, as shown in the command line example,

we get two lines of output code. The first l ine was

"72 01 4b 46 7f ff 0e 1 0 57 : crc=57 YES". We

strip this l ine, except for the last three characters,

and check for the “YES” signal, which indicates

a successful temperature reading from the

sensor. In Python, not-equal is defined as “! =”,

so here we are saying that whi le the reading

does not equal "YES", sleep for 0.2s and repeat.

def read_temp():

lines = temp_raw()

while lines[0] . strip()[-3:] ! = ' YES' :

time. sleep(0. 2)

lines = temp_raw()

Once a YES signal has been received, we

proceed to our second line of output code. In our

example this was "72 01 4b 46 7f ff 0e 1 0 57

t=231 25". We find our temperature output “t=”,

check it for errors and strip the output of the “t=”

phrase to leave just the temperature data. Final ly

we run two calculations to give us the

temperature in Celsius and Fahrenheit.

temp_output = lines[1] . find(' t=')

if temp_output ! = -1:

temp_string = lines[1] . strip()[temp_output

+2:]

temp_c = float(temp_string) / 1000. 0

temp_f = temp_c * 9. 0 / 5. 0 + 32. 0

return temp_c, temp_f

29

Final ly, we loop our process and tel l i t to output

our temperature data every 1 second.

while True:

print(read_temp())

time. sleep(1)

That’s our code! A screenshot of the complete

program is shown below. Save your program and

run it to display the temperature output, as

shown on the right.

Multiple sensors

DS1 8B20+ sensors can be connected in paral lel

and accessed using their unique serial number.

Our Python example can be edited to access and

read from multiple sensors!

As always, the DS1 8B20+ sensor and all

components are avai lable separately or as part

of our workshop kit from the ModMyPi website

http://www.modmypi.com.

This article is
sponsored by

ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com
http://www.modmypi.com

	Sidor från The-MagPi-issue-15-en.pdf0
	Sidor från The-MagPi-issue-16-en.pdf0
	Sidor från The-MagPi-issue-17-en.pdf0
	Sidor från The-MagPi-issue-18-en.pdf0
	Sidor från The-MagPi-issue-19-en.pdf0
	Sidor från The-MagPi-issue-21-en.pdf0
	Sidor från The-MagPi-issue-23-en.pdf0

